
Lyapunov exponents

Lyapunov exponents quantify the average 

exponential separation between nearby 

phase space trajectories.

A dynamical System in Rm has m Lyapunov 

exponents.

The maximum Lyapunov exponent λ(x0)

with respect to a reference orbit x0

determines the system behaviour and is 

given by:

is the Euclidian distance between 

the trajectories x0(t) and x1(t) at 

initial time t=0



Consider an infinitesimal m-dimensional sphere of initial conditions that is anchored 

to a reference trajectory. As the trajectory evolves in time, it becomes deformed into 

an ellipsoid.

with pi is the length of the i-th 

principal axis

Volume elements in phase space evolve in 

time as
The sum of the Lyapunov 

exponents is equal to the 

divergence of the vector field

Lyapunov exponents



Lyapunov exponents

If the largest Lyapunov exponent is positive, trajectories will diverge:

 Chaotic system 

Otherwise, they will get closer reaching a non chaotic attractor. We have either a 

conservative system (λ = 0) in which no work is done on a closed trajectory 

(gravity, conservation of angular momentum...) 

or a dissipative system for (λ < 0) in which energy (internal, bulk flow kinetic, or 

system potential) is transformed from an initial form to a final form (dampened 

oscillation)



Following this argument, a necessary condition for a system to be chaotic is 

that at least one of the exponents (the largest one) is positive. 

Lyapunov exponents also give an indication of the period of time in which 

predictions are possible and this is strongly related with the concept of 

information theory and entropy:

The sum of all positive Lyapunov exponents (expansion rate of the manifold) 

equals the Kolmogorov entropy 

Lyapunov exponents

Divide phase space into D-dimensional hypercubes of εD

content . Let Pi0…in be the probability that a trajectory is in 

hypercube i0 at t=0, i1 at t=T, i2 at t=2T , etc. 



Correlation Dimension D2

In chaos theory, the correlation dimension D2  is a measure of the 

dimensionality of the space occupied by a set of random points, often referred 

to as a type of fractal dimension  attractors

A set of points distributed on 

a triangle, embedded in a 

cubic space: D2 = 2

Estimation by Grassberger-Procaccia 

Algorithm

The probability that two points of the set are in the 

same cell of size r is approximately equal to the 

probability that two points of the set are separated 

by a distance ρ less than or equal to r:

with ϴ being the 

Heaviside function Euclidean distance



Correlation Dimension D2

The approximation made is exact in the limit N ∞;  however, this limit cannot 

be realized in practical applications. The limit r   0 used in the definition of D2

is also not possible in practice.  

Instead,  Procaccia  and Grassberger  propose the (approximate) evaluation  of  

C(r)  over  a range  of values  of  r  and  then  deduce D2  from  the slope of 

the straight  line of best fit in the linear scaling region of a plot of log C(r) versus 

log r. 



Practical examples:

Epilepsy: 

Petit Mal (Babloyantz and Destexhe, 1986): Druing seizures attractor has a 

global stability (low D2) but λ = 2.9 +- 0.6  chaotic properties and great 

sensitivity to initial conditions

Grand Mal (Iasemidis and Sackellares, 1991): Drop in the Lyapunov exponents 

during seizures but higher values postictally (chaotic state) than ictally or pre-

ictally.

Sleep:

Babloyantz 1988, Röschke 1994: Lyapunov exponents positive but decrease as 

sleep becomes slower (Stage II: λ = 0.6 +- 0.2, Stage IV: λ = 0.45 +- 0.15)

Dementia and Parkinson:

Stam, 1995: Compared 13 Parkinson and 9 demented patients against a 

healthy control group. They found λ = 6.17 for heathy and λ = 6.12 for 

Parkinson (but lower D2) and a significant lower λ = 4.84 for demented 

patients.



Lyapunov exponents sensible to evolution time1 and 

embedding dimension2

Limitations:

1: If time steps are chosen too small no 

evolution of  neighbor trajectories (e.g., 

sticky orbits), if chosen too large jumps to 

other trajectories give unreliable results.

2: Need for a complete unfolding of the 

attractor    testing of multiple embedding 

dimensions


