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THEORETICAL 
BACKGROUND  
-  Physiological background of APs, synapses, neurons 

-  Non- linear dynamics in modeling 

-  Integrate and Fire model.  

-  Hodgkin & Huxley model 

-  H&H-Based models (FitzHugh-Nagumo, Izhikevich).  

-  Kuramoto model of synchronization (oscillators) 

-  H&H Simulator. 

-  Dif. Between single neurons – neuronal masses – neuronal fields. 
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DESCRIPTION OF 
NEURONAL DYNAMICS 
-  Why modeling? Phenomena not directly observable. Generate data, 
study emergent behaviors, or observation models (inverted giving 
empirical data) 
- Action Potential (AP): Units of information transmission at inter-neuronal 
level.  
-  Information encoded through firing rate / temporal coding. 
-  Neuronal networks: embedded stochastic processes = difficult to analyze 
and solve mathematically. Populations are analyzed as “tending to infinity”. 
-  Dimensional reduction is desired in every case. For example: Reduction 
of a population to a function, a “probability distribution” describing its 
activity at a given time.  
- Probability distribution > reduced to a single variable describing the 
evolution of the system (its dynamics): 

        
   “MEAN FIELDS”  -  “FIRING RATE (FR)” 
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MEAN-FIELD MODELS 
-  Spatiotemporal spike patterns from AP (input). Temporal evolution 
given by the single-cell model, e.g (sub-treshold): 

       (1) 

-  Each neuron i described through Vi (t) . Total synaptic input from 
other neurons is Ii (synaptic current flow) and can be described for N 
neurons as the contribution of their spikes δ:   

       (2) 
 

    If we integrate (1), given (2)… 

 HTW – BMT – Neuronal Analysis and Modeling, “Multiscale Modeling” lecture – WS 2013 



MEAN-FIELD MODELS 
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       (3,4) 

 

 

Non-linear: stochastic spike generation, defined by sub-threshold 
dynamics. 

Moreover: 

-  IF each neuron is explicitly modeled in such fashion (1-4) and 

-  We are talking of neuronal networks on the order of 10^16… 

Processing costs too high and impractical (but possible..) 

 

 

 



MEAN-FIELD MODELS 

HTW – BMT – Neuronal Analysis and Modeling, “Multiscale Modeling” lecture – WS 2013 

Alternative: Population (ensemble) density approach, using 
Fokker-Planck: 

-  Create a phase space for each neuron; attributes of the neuron 
(V, I, t) are the dimensions of the space e.g.                 
called a point or particle in the phase space; then the space is 
3D and the density is given by  , a scalar function. It 
evolves to a steady state. 

 
-                                                                          (5) 

 

    (Fokker-Planck equation) 
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Dynamics (phase flow, f(v,t)) and random fluctuations (dispersion, 
D(v,t)) describe the model at neuronal level, and is considered a 
stochastic differential equation. 

Resuming: the Fokker-Planck equation summarizes the flow and 
dispersion of the states over the given phase space, as a natural 
summary of population dynamics.   

 

But which dynamics are being used to describe the population? 
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-  Individual IF neurons are grouped into populations of 
statistically similar neurons, based on V(t). 

-  The probability density function expresses the distribution of 
neuronal states (membrane potential) over the population. But 
neurons with the same V(t) at a given t are different due to 
fluctuations in I(t) (stochastic element).  

-  Population density approach assumes: I(t)s in neurons are 
uncorrelated, so neurons with same V(t) are uncorrelated. 

-  For its evolution in time, if currents are uncorrelated, they 
share the same statistics. So we can replace discharge rate of 
individual cells with a common time-dependent population 
activity (ensemble average).  = NO SINGLE NEURONS  

-                                                            (good news!) 
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-  We can talk now of the change of the membrane potential in 
time, for all neurons as:  

-                                                                           (6) 
 

N = # of neurons; Q(t) = mean firing rate; 

<J>j = average of synaptic weights.  

 

The so-called “mean-field approximation” 
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Synaptic weights / connectivity kernels (examples)  



MEAN-FIELD MODELS 
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Until now: 

-  Simulation of a network of neurons allows the study of firing 
rates; 

-  The Fokker-Planck equation describes the dynamical behavior 
and evolution of the network, including the original neurons. 

But can we simplify it even more?  

-  If the population has many states (features) the equations 
needed will increase.  

-  We can reduce the number of states (i.e. the dimension of the 
phase space), for example 1D PDEs in terms of refractory 
density.  
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NEURAL MASS MODELS 

-  Special case of ensemble density models, which describe the 
ensemble density with a scalar.  

-  Description in terms of expected values for the neural states 
under the assumption that the equilibrium density has a point 
mass (a δ ).   

-  This means: We replace the density with a mass at a particular 
point  and we describe the dynamics based on the location of 
that mass.  
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NEURAL MASS MODELS 

-  We lose resolution compared to a full Focker-Planck equation; 
different phase functions could couple to each other, e.g. 
average depolarization in one ensemble could be affected by 
the dispersion or variance of another.  

-  Only coupling the expectations (mean) between such 
ensembles. 
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NEURAL MASS MODELS 

Example: depolarization = convolution of the input signal (firing 
rate) with an impulse response kernel 

 

              (7) 

 

Summary: Neural mass models ignore all but the mean of the 
ensemble density.  

But what happens if we consider the states being a function of the 
position of our ensemble in the cortex?   

    …NEURAL FIELD MODELS 



NEURAL FIELD 
MODELS 
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-  Until now the models have covered point processes (useful for 
EEG sources, neurons or neuronal networks).  

-  E.g., depolarisation of the ensemble not as a point process but 
as a continuum or field (funcion of time AND space). 

-  Modeled through wave equations dealing with lateral 
interactions. 

-                                                                            (8) 

-  spatiotemporal convolution; in generic form as: 



NEURAL FIELD 
MODELS 
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                 (9) 

 

Where: 

-          U (x,t) = neural field (neural mass activity at x,t). 

-  F(u) = local dynamics of neural field  

-                                   = delay due to signal propagation 

-  h = threshold value 

-  L  = spatial domain 

-                        = connectivity function  

 

 

asdasd 



NEURAL FIELD 
MODELS 

HTW – BMT – Neuronal Analysis and Modeling, “Multiscale Modeling” lecture – WS 2013 

If our firing rate is a Heaviside function we can simplify as: 

               

               (10) 

 

the so-called “one bump solution”. 

Features can be added to the model such as separate exc/inh 
neural populations, nonlinear neural responses, corticothalamic 
feedback among others.  

Parameters significant for EEG generation (synaptic time 
constants, neurotransmitter release/uptake, speed of signal 
propagation along dendrites . . . )    [balanced parameters!] 

 



NEURAL FIELD 
MODELS 
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Recent development using neural field models: 

-  Predictions about brain electrical activity (EEG timeseries, 
spectra, coherence and correlations, ERPs, seizure dynamics, 
among others…)  
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(1977) Neural tissue as neural field which form 
and propagate non-homogeneous excitation  
patterns in an homogeneous field. Their 
dynamics play a role in information processing. 

 

Starting on a field equation, derived from 
statistical considerations.  Study of pattern 
formation in 1D homogeneous fields of lateral 
inhibition. Defined independent neurons and 
split into small homogeneous random subnets. 

Arranged a field with m type of neurons, in m 
layers.  
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Average activity (firing rate) of the neurons at x, at t: 

                   (11) 

Starting from the field equation: 

 

                   (12) 

 

 

Wij = intensity of connection between layers (i-j) 
si = intensity of stimulus (avg stimulation level) 

For no time lag, we can drop t completely. 
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Specific cases: 

-  1 D field 
Homogeneous 
Negligible lag 
One layer with both exc/inh neurons (lateral inhib f(dist) weight 
function) 
Output function: step function (fires or not at all, instead of 
sigmoid). 

-                                         (13) 
  

  “Basic equation of simplified 1-layer Amari fields” 
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Specific cases: 

In the absence of input s(x,t)=0: 

In equilibrium,       and therefore 

                  (14)  

 

For a localized excitation, the excited region of the field 

and therefore   

                  (15) 
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Firing rate = highly non-linear. In vivo, in vitro, in silico (both 
conductance and IF models) due to noise. Only if a linear input is 
present, will the output be linear (e.g. currents being injected).  

Assumed that interactions in populations are mediated by firing rates 
instead of spikes per-se 
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If we observe one of the most common firing-rate functions 
(sigmoid): 

 

 

It saturates to 1 for large values of g. Therefore, firing rate is a 
function of conductance of the presynaptic neuron (which is directly 
proportional to the drive in the postsynaptic neuron). If we express 
the conductance as: 

  

And then we introduce a coupling function, integrate over a domain 
for a tissue level in 1D, we obtain:  
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And for the special case when  

We can start to reconstruct the Amari model: 
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Amari, Wilson & Cowan, among others described the population-
averaged firing-rate. 

The mean field equations are not always easy to interpret and to 
relate to physical observable quantities.  

Considering: 

-  P populations composed of N neurons (N tending to infinity, 
“mean field limit”). 

-  Each neuron described by its membrane potential and a d-
dimensional variable Z dependent on the model employed to 
represent single neuron dynamics:  
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Stochastic differential equation to describe dynamics in the population. Describing 
specific neuron models through stochastic differential equations:  

 

     H&H 

 

 

       FitzHugh- 

       Nagumo 

 

    Very complex to analyze and simulate!  
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Firing rate as macroscopic descriptor as seen before: 

Other way to see it: Integrating the value of the membrane potential 
during a time window and dividing by the area under a spike. This 
means, the membrane potential is a lineal transformation of the 
firing rate!  

Then, one can use the average of the membrane potential, within a 
population and for a certain time as a definition of macroscopic 
activity. 

Sub-threshold activity has an impact in membrane potential but not 
in firing rates.  

 

 



TIME FOR  
QUESTIONS   
None? Hmm… 
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