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Finite Element Method (FEM) &
COMSOL

A (very) brief introduction
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Computer Simulation

 Best way to simulate complex
models.

* High-end processing (processing
power increasing every day)

e |s it reliable?

— Does it accurately represent real-life
conditions such as physical laws and
material properties?
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Computer Simulation

 Computer simulation has become an essential part
of science and engineering.

* Today a broad spectrum of options for simulation is
available

Basic programming - High level methods

* Each technique has its own unigue attributes
* All share a common concern

‘ Can you rely on the results?
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What makes software reliable???

* Intention
- you want a model that accurately depicts what happens in
the real world.

* A computer simulation environment is simply a translation of
real-world physical laws in their virtual form.

|t would be ideal, then, to have a simulation environment that
included the possibility to add any physical effect to your
model.

That iIs what Comsol is all about

"a CONMSOL %
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Application fields

Convection and Acoustics Module Electromagnetics
Diffusion

&

Chemical Engineering SR Fluid Dynamics Earth Science #
Module Module Bl

Acoustics

Structural Mechanics RF Hodule
Module
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Comsol Multiphysics
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Partial Differential Equations PDEs

 Most physical phenomena are described at a
fundamental level by interactions between particles
— Quarks, nucleons, mesons in Nuclear physics
— Atoms, molecules, electrons in Classical physics

* If we were to model a physical system, we would
have to consider lots of particles such as 6*10723
per gram mole (per gram for Hydrogen)

— Unfortunately, It would not be efficient or even realistic
(numerically speaking) to represent each particle by one
equation

||~ Partial Differential Equations PDEs
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—

. Laplace’s equation
™
Au = Zumws = 0.
=1

2. Helmholiz’s (or eigenvalue) equation
—Au = Au.

3. Linear transport equation

ur + ibgumi = 0.

i=1

4. Liouville’s equation

u— > (b'u)s, =0.
t=1

5. Heat (or diffusion) equation

ur — Au = 0.

6. Schradinger’s eguation

iug + Au = 0.
7. Kolmogorov’s eguation

T ™
U — E aVuy,x; + E bu,, = 0.
i,J=—1 i=1

8. Fokker—Planck equation

9.

10.

11

12

13

n

up — Z (a7 u)z,z, — Z(biu)x; = 0.

i,i=1

Wave eguation

Telegraph equation

. General wave equation

™
utt_z

i,7=1

. Airy’s equation

. Beam equation

n

i=1

WU — Au = 0.

T
aijumizj + E biuxi = Q.
i=1

Ut + Upzr = 0.

Ut + Uzzze = 0.

Finite Element Method / COMSOL

Linear equations
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1. Eikonal equation 7. Scalar conservation law

|Du| = 1. wo + div F(w) =

2. Nonlinear Poisson eguation

—Au = f(u).

8. Inviscid Burgers’ equation
3. p-Laplacian equation

9. Scalar reaction-diffusion equation
div(|DulP~?Du) = 0.

— Au = f(u).

4. Minimal surface equation _ .
10. Porous medium equation

di Du =10 v
Y\a+Depiz) T up — A(u’) = 0.

11. Nonlinear wave equations

5. Monge-Ampeére equation

det(D%u) = f. ue — Au = f(u),
Ut — diV a(Du) = 0.
6. Hamilton-Jacobi equation

12. Kort -deVries (KdV) equation
wo + H(Du, z) = orteweg es (KdV) equa

Up + UUyz + Ugpgr = 0.

Non-Linear equation:s

UNIVERSITAT

. @@
Systems Neuroscience & ||m-|| oes
SAARLANDES
Neuroiechnolugy Un|1

Finite Element Method/COMSOL o e T8 B




PDEs Systems

Linear Systems

1. Equilibrium equations of linear elasticity
plAu + (A + p)D(divu) = 0.

2. Fvolution equations of linear elasticity

uy — pAu— (A + p)D(divua) = 0.

3. Mazwell’s equations

E; =curlB
Bt = —curlE
divB =divE =0.

Non-Linear Systems
1. System of conservation laws

u; + le F(l.l) = 0.

2. Reaction-diffusion system

— Au = f(u).

3. Euler’s equations for incompressible, inviscid flow

{ut-i-u-Du:—Dp
divu = 0.

4. Navier—Stokes equations for incompressible, viscous flow

{u¢+u-Du—Au=—Dp
divu=0.

Finite Element Method / COMSOL
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PDEs

We can solve a PDE by

 Analytical Methods
— Separation of variables
— Green Functions
— Method of characteristics
— Transformations: Laplace and Fourier

transforms
* Numerical Methods I Comsol
— Finite Element Method (FEM) (1D, 2D)

— Finite Difference Method (FDM)

— Finite Boundary Element
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Finite Element Method

Interpretations

Physical Interpretation

— The continous physical model is divided into finite pieces
called elements and laws of nature are applied on the
generic element. The results are then recombined to

represent the continuum.

Mathematical Interpretation

— The differential equation representing the system is
converted into a variational form, which is approximated
by the linear combination of a finite set of trial functions.
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Solving a PDE through FEM

* Specify the type of solver (stationary
(linear/non-linear), time dependent,
eigenvalue, parametric
(linear/non-linear).

* Specify the domain of the equation.
* Specify the boundary conditions.
 Create a mesh (divide the domain

Into finite elements).

@®
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Finite Elements

* Defined by:
— Dimension
— Nodes
— Geometry
— Degrees of Freedom (vertices)
— Nodal forces

Finite Element Method / COMSOL




Finite Elements
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More info: http://www.colorado.edu/engineering/cas/courses.d/IFEM.d/
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Finite Element Method / COMSOL

Solving a PDE through FEM

Once we have defined a domain (for example, an Q
domain) , we apply the boundary conditions:

— Newman, how should the function behave when it is
orthogonal to the boundary.

— Dirichlet, it only specifies certain values for the function at the
boundaries.

When we have a 2-D PDE space with defined boundary
conditions (can have both, Dirichlet and Newman), we have
to find the function that satisfies both.

Such function has to be contained in a defined space, such
as the Sobolev space {like a Hilbert space, but they are all
the functions in L2 (finite energy space) for which the
derivatives are also in L2, in other words, they also have
finite energy} .

Example of Sobolev space = functions that are 0 in the
Dirichlet boundary.

So which functions??? ...
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Functions for FEM

 Lagrange FE function:

— Their domain is decomposed into k
triangles, and it is globally continuous. The
triangle gives three degrees of freedom, for
each vertex (hamed ay, a; and a,).

— We describe each 2D linear function
through ay, a; and a,: Each element in the
domain can be represented as ap + a; X; +
d>X> dg,d;,d>E R.

— All triangles together form the new domain:
Each linear function is represented by one
triangle. And a continuous_function is

represented through 2D-linea/ functiar

ms'N

g trigngl # ‘\H(} more trianglesythemc
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Create a mesh
ydivision of the mathematical model into non-overlapping components (element

Effect of Meshes in the Solution ,, I n .

* More elements considered => More ] 4 | / \
accuracy & More computational time j [ ) j ¢ \)
(Solvers Need to be Optimized) PN AN N 4 o

« Refinement in special places of the “ "

geometry improves accuracy of the M 1
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PDEs

 The iterative methods to solve the matrix equations
for a system under such PDE systems are called

stationary methods, since the solving equation is the
same for each iteration.

 To solve such systems, we use modeling. Examples:
— Airflow over an airplane wing
— Magnetic drug targeting
— Non-linear diffusion in image processing

— Propagation of an action potential through the axon
(cable equation).

 How to solve the model? smes N;U”;S“e'&f?& o] =
g evrotechnology Unit i
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Modeling Example

Magnetic drug targeting

(Magnetic Nanoparticles for In Vivo Applications: A
Numerical Modeling Study: Trenado and Strauss, 2007)

Finite Element Method / COMSOL




Magnetic Drug Targeting

1) Background of the problem

Current research on methods to target chemotherapy drugs in
the human body includes the investigation of biocompatible
magnetic nanocarrier systems, for example magnetic liquids
such as ferrofluids. This model investigates an external
magnetic field and its interaction with blood flow containing a
magnetic carrier substance.

2) Graphic idealization of the model

— Permanent Magnet

Human Tissue

Blood flow through vessel ——»

Human Tissue
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3) Mathematical Model

Magnetic Drug Targeting

MAGNETOSTATIC EQUATIONS
Maxwell-Ampere’s law
VeH = J (1)
magnetic field H (A/m) and the current density J {ﬁ,fmzj
Gauss’ law for the magnetic flux density B (Vs /m”)
V-B=0. (2]

The constitutive equations describing the reladon between B and H in the different

parts of the modeling domain read:

[ Moty nmEH +Brem permanent magnet
B =4 ug(H + Mg(H)) blood stream (3)
| ngH tissue and air

Here g is the magnetic permeability of vacuum (Vs,/(A-m)); U, is the relative

magnetic permeability of the permanent magnet (dimensionless); B, is the

remanent magnetic flux (A/m); and Mg is the magnetization vector in the blood

stream (A,/m), which is a function of the magnetic field, H.
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Magnetic Drug Targeting

Detining a magnetic vector potential A such that

B =VxA, V-A=0, i4)

vou finally, by substitution in Equation 1 through Equation 3, arrive at the tollowing

VeCTor €4 vation to solve:

Tﬂ&?xﬁ—ﬂ]:J

Simplifving to a 2D problem with no perpendicular currents, this equation reduces to

?x&%?xﬁ—ﬂ]:ﬂ, (5)
. J

Note thar this equadon assumes that the magnetic vector potential has a nonzero

component only perpendicularly to the planc, A=1(0,0,4,).
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Magnetic Drug Targeting

the induced magnetization Mgdx, v) = (Mg, Mg, ) of a ferrofluid

where ¥ = c¢f is the

L 204

¥ ugdy
DA,

. i o SO
4 J—'[Iax

magnctic susceptibiliny.

Finite Element Method / COMSOL

(G)
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Magnetic Drug Targeting

FLUID FLOW EQUATIONS

pd—u—"? 11{'*T"u+{Tan b+pu-Va+Vp = F N

Vu=90

where 1 dr:nnt::'w the dynamic viscosity I'k;‘;”(m-ri]:l, u the velocity (m/s), p the tluid
density (kg/ m” J, p the pressure (N/ m- ,and F a volume force (N / m®).

With the assumption that the magnetic nanoparticles in the fluid do not interact, the
magnetic force F = (F,, Fy ] on the ferrofluid tor relatively weak ficlds is given by
= |M|V|H| . Using Equation 3, Equation 4, and Equation 6 then leads to the
CXPressions
F = _E_'rﬂf{ 0 A 3.,.&:&3&.]
: Mgt 29x g, dy dxdy

. (04,3°A, o4, 3°A,
F, = ——F
L llDLI 1:]1 -CHII:J} 'Ci' ay— |
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Magnetic Drug Targeting

4) Domain definition and meshhing

Systems Neuroscience & ﬁﬂ oes
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Timedependent snap-shots

T=0sec T=0.2 sec

= 0.7
T=0.7 sec T=1 sec
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Steps

Steps to be regarded when building a simulation

Background of the problem

Graphic idealization of the model
Mathematical Model (underlying equations)
Boundary Conditions

Domain definition and meshing

a kb
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The END.

Next episode:

COMSOL 101. (airs on Thurs-

Finite Element Method / COMSOL
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