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Chapter �

Support Vector Machine

Classi�cation

��� Inducing Feature Spaces by Reproducing Ker�

nels

Let X be a compact subset of Rd containing the data to be classi�ed� We suppose that

there exists an underlying unknown function t� the so�called target function� which

maps X to the binary set f��� �g� Given a training set

A 	 f
xi� yi� � X � f��� �g � i 	 �� � � � �Mg 
������

of M associations� we are interested in the construction of a real valued function f

de�ned on X such that sgn
f� is a 
good approximation
 of t which classi�es the

training data correctly� i�e�� sgn
f
xi�� 	 t
xi� 	 yi for all i 	 �� � � � �M � Here

sgn
f
x�� 	

�
� if f
x� � ��

�� otherwise�

We will search for the hypothesis function f in some reproducing kernel Hilbert spaces

which we will introduce next�

Positive De�ne Functions� By L�
X � we denote the Hilbert space of real valued

square integrable functions on X with inner product hf� giL� 	
R
X
f
x�g
x� dx� Let

K � X � X �� R be a positive de�nite symmetric function in L�
X � X �� Following

�
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����� we call a function K � L�
X �X � positive de�nite if for any �nite set of elements

fx�� � � � �xng � X � the matrix 
K
xi�xj��
n
i�j�� is positive de�nite� In this chapter� we

are only interested in functions K arising from RBFs� In other words� we assume that

there exists a real valued function k on R so that

K
x�y� 	 k
jjx� yjj��� 
������

where jj�jj� denotes the Euclidean norm on Rd � In our applications� we will use Gaussian

kernels and Wendland
s compactly supported RBFs ����� The latter were not applied

in connection with classi�cation tasks up to now�

For a given K� there exists a reproducing kernel Hilbert space

HK 	 span fK
�x� �� � �x � Xg

of real valued functions on X with inner product determined by

hK
�x�x�� K
�x�x�iHK 	 K
�x� �x� 
������

which has reproducing kernel K� i�e��

hf
��� K
�x� ��iHK 	 f
�x�� f � HK�

By Mercer�s Theorem� K can be expanded in a uniformly convergent series on X � X

K
x�y� 	
�X
j��

�j�j
x��j
y�� 
������

where �j � � are the eigenvalues of the integral operator TK � L�
X � � L�
X �

with TKf
y� 	
R
X
K
x�y�f
x� dx and where f�jgj�N are the corresponding L�
X ��

orthonormalized eigenfunctions�

We introduce a so�called feature map � � X � �� by

�
�� 	 �p�j�j
��
�
j�N

�

Let �� denote the Hilbert space of real valued quadratic summable sequences a 	 
ai�i�N

with inner product ha� bi�� 	
P

i�N aibi� By 
������ we have that �
x� 
x � X � is an

element in �� with

jj�
x�jj��� 	
�X
j��

�j�
�

j
x� 	 K
x�x� 	 k
���
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We de�ne the feature space FK � �� by the ���closure of all �nite linear combinations

of elements �
x� 
x � X �

FK 	 span f�
x� � x � Xg�

Then FK is a Hilbert space with jj � jjFK 	 jj � jj��� The feature space FK and the

reproducing kernel Hilbert space HK are isometrically isomorph with isometry � �

FK �HK de�ned by

�
w� 	 fw
x� 	 hw��
x�i�� 	
�X
j��

wj
p
�j�j
x�� 
������

In particular� we have that

jjfwjjHK 	 jjwjjFK � 
������

��� Regularization in RKHS and the Optimal Hy�

perplane

Let us turn to our classi�cation task� For a given training set 
������ we intend to

construct a function f � HK which minimizes

�
MX
i��


�� yif
xi��� �
�

�
jjf jj�HK � 
������

where


��� 	

�
� if � � ��

� otherwise�

Note that we can also look for functions of the form f 	 h�b 
h � HK� with a so�called

bias term b � R� We omit the bias term b here� because its explicit consideration does

not lead to an improvement of our numerical results in this chapter�

The unconstrained optimization problem 
������ is equivalent to the following con�

straint optimization problem� �nd f � HK and ui 
i 	 �� � � � �M� to minimize

�

�
MX
i��

ui

�
�
�

�
jjf jj�HK � 
������
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subject to

yif
xi� � �� ui� i 	 �� � � � �M�

ui � �� i 	 �� � � � �M�

Every function f � HK corresponds uniquely to a sequence w � FK� Thus� by 
������

and 
������� the optimization problem 
������ can be rewritten as follows� �nd w � FK

and ui 
i 	 �� � � � �M� to minimize

�

�
MX
i��

ui

�
�
�

�
jjwjj�FK � 
������

subject to

yihw��
xi�iFK � �� ui 
i 	 �� � � � �M�� 
�������

ui � � 
i 	 �� � � � �M��

Optimal Hyperplane� In general the feature space FK � �� is in�nitely dimensional�

For a better illustration of 
������ we assume for a moment that FK � R
n � Then the

function �fw
v� 	 hw�viFK de�nes a hyperplane hw 	 fv � FK � �fw
v� 	 �g in R
n

through the origin and an arbitrary point vi � FK has the distance hw�viiFK�jjwjjFK
from hw� Note that �fw
�
x�� 	 fw
x�� Thus the constraints yihw��
xi�iFK�jjwjjFK �
��jjwjjFK � ui�jjwjjFK 
i 	 �� � � � �M� in 
������� require that every �
xi� must at

least have the distance ��jjwjjFK � ui�jjwjjFK from the hyperplane�

If there exists w � FK so that 
������� can be ful�lled with ui 	 � 
i 	 �� � � � �M�� then

we say that our training set is linearly separable in FK� Of course� for Gaussian kernels

or kernels arising from Wendland
s compactly supported RBFs every �nite training set

is linearly separable in FK� e�g�� see ��� and ����� Then the optimization problem 
������

can be further simpli�ed to� �nd w � FK to minimize

�

�
jjwjj�FK 
�������

subject to

yihw��
xi�iFK � � 
i 	 �� � � � �M��

Given HK and A� the optimization problem above has a unique solution f
w
�� In our

hyperplane context h
w
� 	 fv � FK � �f

w
�
v� 	 �g is exactly the hyperplane which has

maximal distance 	 from the training data� where

	 	
�

jjw�jjFK
	

�

jjfw�jjHK
	 max

w�FK

min
i������ �M

� jhw��
xi�iFK j
jjwjjFK

�
� 
�������
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The value 	 is called the margin of hw� with respect the training set A� In this context�
the solutions of the optimizations problems 
������ and 
������� are called soft margin

and hard margin SVM� respectively� See Figure ��� for an illustration of the hard

margin case in R� �

Figure ���� The separation of two classes by an optimal hyperplane hw� with margin

	�

Large Margin Theorem� To obtain a classi�er that generalizes well� we have not

only to minimize the error on the training data 
the empirical risk� but also to adjust

the capacity� of a learning machine� e�g�� the number of hidden neurons for FFBNs� ap�

propriately to the complexity of the data� In fact� this is one major result of statistical

learning theory� Roughly speaking� it states that we should select the simplest model to

explain the dependence of the training associations� SVMs control the capacity by an

increasing margin and do not depend on parameters related to the input and feature

space dimensionality� Therefore SVMs are often considered to be independent from

the dimensionality� In particular� by ��� Theorem ����� we have that the generalization

�To measure the capacity� several quantities are known such as the Vapnik Chervonenkis �VC�

dimension used in structural risk minimization ����� the fat�shattering dimension related to data�

dependent structural risk minimization ��� as well as the gamma�dimension �����
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error of the hard margin SVM classi�er decreases if the margin 	 increases� In other

words� the larger the margin 	 the better generalization of the SVM can be expected�

We call this the large margin theorem in our following discussions� Note that there

exist also estimates for the generalization error of soft margin SVM classi�ers which

involve the margin of the unknown target function� see� e�g�� ��� Theorem ����� and

�����

A major advantage of SVMs compared to FFBNs is that they adapt the complexity

automatically 
as we will see� and circumvent the unintentional freedom of choosing

an appropriate complexity� i�e�� determining the capacity� by hand� In general� there

are only a few parameters to adjust�

��� Solution of the RKHS Regularization Problem

Next we consider the solution of regularization problems above� where we follow mainly

the lines of ����� Here the notation support vector 
SV� comes into the play�

By the Representer Theorem 
���� ����� the minimizer of 
������� i�e�� the hypothesis

function� has the form

f
x� 	
MX
j��

cjK
x�xj�� 
�������

Setting f 	 
f
x��� � � � � f
xM��T �K 	 
K
xi�xj��
M
i�j�� and c 	 
c�� � � � � cM�T we obtain

that

f 	 Kc�

Note that K is positive de�nite� Further� let Y 	 diag
y�� � � � � yM� and u 	


u�� � � � � uM�T � By � and e we denote the vectors with M entries � and �� respec�

tively� Then the optimization problem 
������ can be rewritten as

min
u�c

�eTu �
�

�
cTKc 
�������

subject to

u � e�YKc�

u � ��
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The dual problem with Lagrange multipliers � 	 

�� � � � � 
M�T and � 	 
��� � � � �M �T

reads

max
c�u����

L
c�u������

where

L
c�u����� 	 �eTu �
�

�
cTKc� �Tu��Te� �TYKc� �Tu

subject to
�L

�c
	 ��

�L

�u
	 �� � � �� � � ��

Now � 	 �L
�c

	 Kc�KY� yields

c 	 Y�� 
�������

Further we have by �L
�u

	 � that � 	 �e��� Thus our optimization problem becomes

max
�

�
��

�
�TYKY�� eT�

�

�������

subject to

� � � � �e�

Quadratic Programming� This quadratic programming 
QP� problem is usually

solved in the SVM literature� For a moderate number of associations some standard

QP routines can be used and for a large number of associations� e�g�� jAj 
 �����

speci�cally designed large scale algorithms should be applied� e�g�� SVMlight ����� Since

such QP problems o�er a global solution� they cannot be trapped into local minima

during learning as FFBNs based on the backpropagation algorithm�

The SVs are those training patterns xi for which 
i does not vanish� Let I denote the

index set of the support vectors I �	 fi � f�� � � � �Mg � 
i �	 �g then by 
������� and


�������� the function f has the sparse representation

f
x� 	
X
i�I

ciK
xi�x� 	
X
i�I

yi
iK
xi�x�

which depends only on the SVs�

With respect to the margin we obtain by 
������� and 
������ that

	 	 
jjf jjHK��� 	 
cTKc����� 	

�X
i�I

yi
if
xi�

�����
�
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Due to the Kuhn�Tucker conditions ���� the solution f of the QP problem 
������� has

to ful�ll


i
�� yif
xi�� ui� 	 �� i 	 � � � � �M�

In case of hard margin classi�cation with ui 	 � this implies that yif
xi� 	 � 
i � I�

so that we obtain the following simple expression for the margin

	 	

�X
i�I


i

�� �

�

� 
�������

Support Vector Count Theorem� By ��� Theorem ����� the number of SVs can

also be used to give an upper bound of the generalization error� The fewer the number

of support vectors the better generalization of the SVM can be expected� Note that

this theorem is in good accordance to our claims of building small models to describe

dependencies as we have discussed in the previous chapters� Note also that Burges has

given a nice and pictorially interpretation of this theorem in his tutorial ����
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