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Chapter 1

Support Vector Machine

Classification

1.1 Inducing Feature Spaces by Reproducing Ker-

nels

Let X be a compact subset of R? containing the data to be classified. We suppose that
there exists an underlying unknown function ¢, the so—called target function, which

maps X to the binary set {—1,1}. Given a training set
A={(xy) € X x {~1,1}ri=1,... M} (1.1.1)

of M associations, we are interested in the construction of a real valued function f
defined on X such that sgn(f) is a ’good approximation’ of ¢ which classifies the
training data correctly, i.e., sgn(f(x;)) =t(x;) = y; foralli =1,..., M. Here

L if f(x) >0,

—1 otherwise.

sgn(f(x)) = {

We will search for the hypothesis function f in some reproducing kernel Hilbert spaces

which we will introduce next.

Positive Define Functions. By L?*(X) we denote the Hilbert space of real valued
square integrable functions on X with inner product (f,¢)r> = [, f(2)g(x)dz. Let
K : X x X — R be a positive definite symmetric function in L?(X x X’). Following
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4 1. SUPPORT VECTOR MACHINE CLASSIFICATION

[22], we call a function K € L*(X x X) positive definite if for any finite set of elements
{x1,...,x,} C &, the matrix (K(x;,%;));,_, is positive definite. In this chapter, we
are only interested in functions K arising from RBFs. In other words, we assume that

there exists a real valued function £ on R so that

K(x,y) = k(|[x = yll2), (1.1.2)

where ||-||2 denotes the Euclidean norm on R¢. Tn our applications, we will use Gaussian
kernels and Wendland’s compactly supported RBFs [35]. The latter were not applied

in connection with classification tasks up to now.

For a given K, there exists a reproducing kernel Hilbert space

Hix =span {K(X,-) : x € X}
of real valued functions on X with inner product determined by
(K(%,%), K(X,%))3, = K(X,X) (1.1.3)
which has reproducing kernel K, i.e.,
(O K& e = f(X), [ €Hr

By Mercer’s Theorem, K can be expanded in a uniformly convergent series on X' x X
K(x,y) = njei(x)e;(y), (1.1.4)
7=1

where n; > 0 are the eigenvalues of the integral operator Tk : L*(X) — L*(X)
with Tk f(y) = [, K(x,y)f(x)dx and where {¢;};cn are the corresponding L?(X)-

orthonormalized eigenfunctions.

We introduce a so—called feature map ® : X — (? by

(I)() = (\/U_jo('))jeN :

Let £ denote the Hilbert space of real valued quadratic summable sequences a = (a;);en
with inner product (a,b),> = Y,y a;b;. By (1.1.4) we have that ®(x) (x € X) is an

element in /2 with

12 ()] = ZUW?(X) = K(x,x) = k(0).
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We define the feature space Fx C €2 by the £2-closure of all finite linear combinations
of elements ®(x) (x € X)

Fr =span {®(x) : x € X'}.

Then Fy is a Hilbert space with || - ||z, = || - ||z The feature space Fx and the
reproducing kernel Hilbert space Hjy are isometrically isomorph with isometry ¢ :
Frx — Hg defined by

UW) = fu(x) = (W, B(x))p = ij\/n—jgoj(x). (1.1.5)

In particular, we have that

[ fwllore = w7 (1.1.6)

1.2 Regularization in RKHS and the Optimal Hy-

perplane

Let us turn to our classification task. For a given training set (1.1.1) we intend to

construct a function f € Hx which minimizes

M
1
A (1= gaf () + 5111 (1.2
i=1
where

T if 7 >0,
(T)+:{

0 otherwise.

Note that we can also look for functions of the form f = h+b (h € Hy) with a so—called
bias term b € R. We omit the bias term b here, because its explicit consideration does

not lead to an improvement of our numerical results in this chapter.

The unconstrained optimization problem (1.2.7) is equivalent to the following con-

straint optimization problem: find f € Hg and u; (i = 1,..., M) to minimize

M 1
A (Z u) + §||f||3¢K, (1.2.8)
=1
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subject to
yzf(xz) > 1_ui; izla"'aMa
u; > 0, i=1,...,M.

Every function f € Hg corresponds uniquely to a sequence w € Fg. Thus, by (1.1.5)
and (1.1.6), the optimization problem (1.2.8) can be rewritten as follows: find w € Fg

and u; (1 =1,..., M) to minimize

M
1
A (Z u> + §||w||3¢K, (1.2.9)
i=1

subject to
yi<wa (I)(Xi)>.7"}( > 1- Us (Z = 17 Tt JM)J (1210)
w > 0 (i=1,...,M).

Optimal Hyperplane. In general the feature space Fx C £2 is infinitely dimensional.
For a better illustration of (1.2.9) we assume for a moment that Fx C R™. Then the
function fu(v) = (w,v) s, defines a hyperplane hy = {v € Fx : fw(v) = 0} in R?
through the origin and an arbitrary point v; € Fy has the distance (w,v;)z,/||W|| 7
from hy. Note that fo(®(x)) = fw(x). Thus the constraints y;(w, ®(x;)) 7, /||W|| 7, >
Vw||l7e — wi/||lWllge (@ =1,..., M) in (1.2.10) require that every ®(x;) must at
least have the distance 1/||w||#,. — u;/||W||#, from the hyperplane.

If there exists w € Fg so that (1.2.10) can be fulfilled with u; =0 (i =1,... , M), then
we say that our training set is linearly separable in Fy. Of course, for Gaussian kernels
or kernels arising from Wendland’s compactly supported RBFs every finite training set
is linearly separable in Fp, e.g., see [3] and [31]. Then the optimization problem (1.2.9)

can be further simplified to: find w € Fx to minimize

1
§||w||3¢K (1.2.11)

subject to

vi(w, ®(x;))r, >1 (i=1,...,M).
Given Hy and A, the optimization problem above has a unique solution fy-. In our
hyperplane context hy- = {v € Fi : fu-(v) = 0} is exactly the hyperplane which has
maximal distance v from the training data, where

1 1 b (x;
Y= = — max min {|<W’ (Xl»m}. (1.2.12)
W rme ol webc=thom 1 ||wlx,
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The value v is called the margin of hy- with respect the training set A. In this context,
the solutions of the optimizations problems (1.2.9) and (1.2.11) are called soft margin
and hard margin SVM, respectively. See Figure 1.1 for an illustration of the hard

margin case in R2.
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Figure 1.1: The separation of two classes by an optimal hyperplane hy+« with margin

7.

Large Margin Theorem. To obtain a classifier that generalizes well, we have not
only to minimize the error on the training data (the empirical risk) but also to adjust
the capacity' of a learning machine, e.g., the number of hidden neurons for FFBNs, ap-
propriately to the complexity of the data. In fact, this is one major result of statistical
learning theory. Roughly speaking, it states that we should select the simplest model to
explain the dependence of the training associations. SVMs control the capacity by an
increasing margin and do not depend on parameters related to the input and feature
space dimensionality. Therefore SVMs are often considered to be independent from

the dimensionality. In particular, by [7, Theorem 4.18] we have that the generalization

!To measure the capacity, several quantities are known such as the Vapnik Chervonenkis (VC)
dimension used in structural risk minimization [33], the fat—shattering dimension related to data—

dependent structural risk minimization [7] as well as the gamma—-dimension [10].
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error of the hard margin SVM classifier decreases if the margin « increases. In other
words: the larger the margin v the better generalization of the SVM can be expected.
We call this the large margin theorem in our following discussions. Note that there
exist also estimates for the generalization error of soft margin SVM classifiers which
involve the margin of the unknown target function, see, e.g., [7, Theorem 4.21] and
[31].

A major advantage of SVMs compared to FFBNs is that they adapt the complexity
automatically (as we will see) and circumvent the unintentional freedom of choosing
an appropriate complexity, i.e., determining the capacity, by hand. In general, there

are only a few parameters to adjust.

1.3 Solution of the RKHS Regularization Problem

Next we consider the solution of regularization problems above, where we follow mainly

the lines of [34]. Here the notation support vector (SV) comes into the play.

By the Representer Theorem ([17, 34]), the minimizer of (1.2.9), i.e., the hypothesis

function, has the form
f(x)= chK(x, X;). (1.3.13)

Setting f = (f(x1), ..., f(xum))", K= (K(x,%;))}5-, and ¢ = (cy, ... ,car)” we obtain
that
f = Kec.

Note that K is positive definite. Further, let Y = diag(y1,...,yn) and u =
(u1,...,up)”. By 0 and e we denote the vectors with M entries 0 and 1, respec-

tively. Then the optimization problem (1.2.9) can be rewritten as

1
min Me’u + icTKc (1.3.14)

u,c

subject to

-
Y

e — YKc,
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The dual problem with Lagrange multipliers o = (av, ... ,ay)” and 8 = (B4, ... Bur)”

reads
max L(c,u,a, ),
c,u,a,(
where
1
Lc,u,a, B) = NeTu + §cTKc —B'u+a’e—a’YKc - a’u
subject to oL oL
_:07 _:07 04207 IBZO
Jc Ju

_ 0L
NOWO—a—

c —

Kc — KY « yields
c=Yo. (1.3.15)

Further we have by g—ﬁ = 0 that 8 = Ae — a. Thus our optimization problem becomes

1
max <—§aTYKYa + eTa> (1.3.16)

«

subject to

0< a<)e.

Quadratic Programming. This quadratic programming (QP) problem is usually
solved in the SVM literature. For a moderate number of associations some standard
QP routines can be used and for a large number of associations, e.g., |A| > 4000,
specifically designed large scale algorithms should be applied, e.g., SVMlight [15]. Since
such QP problems offer a global solution, they cannot be trapped into local minima

during learning as FFBNs based on the backpropagation algorithm.

The SVs are those training patterns x; for which «; does not vanish. Let I denote the
index set of the support vectors [ := {i € {1,..., M} : o; # 0} then by (1.3.13) and
(1.3.15), the function f has the sparse representation

f(x) = Zci[((xi, X) = Z%%K(Xi, X)
il il
which depends only on the SVs.
With respect to the margin we obtain by (1.2.12) and (1.1.3) that

—~1/2
7= () = (€"Ke) 2 = (Z viouf <Xi>> -

el
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Due to the Kuhn-Tucker conditions [11] the solution f of the QP problem (1.3.14) has
to fulfill

In case of hard margin classification with u; = 0 this implies that y;f(x;) =1 (i € I)

so that we obtain the following simple expression for the margin

v = (Z ai)_ : (1.3.17)

M

Support Vector Count Theorem. By [7, Theorem 6.8], the number of SVs can
also be used to give an upper bound of the generalization error. The fewer the number
of support vectors the better gemeralization of the SVM can be expected. Note that
this theorem is in good accordance to our claims of building small models to describe
dependencies as we have discussed in the previous chapters. Note also that Burges has

given a nice and pictorially interpretation of this theorem in his tutorial [3].
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