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Chapter �

Filter Banks and Adapted

Time�Scale Atoms

The theory of signal�adapted �lter banks has been developed in signal compression

in recent years� Up to now� the underlying ideas mainly stick on this restricted area

although they may have merit in other application �elds such as machine learning� In

this chapter� we introduce lattice structure based signal�adapted �lter banks and time�

scale atoms� respectively� which we extensively employ in the subsequent chapters for

their new application in machine learning instead of signal compression� For decompo�

sitions by time�scale atoms� we strictly make use of a discrete�time approach which is

well suited for digital signal processing� For the sake of self�consistency� we review the

theory of paraunitary �lter banks� describing how they are related to multiresolution

decomposition of ���

��� Introduction

Digital signal processing plays undoubtedly a major role in modern technology such

as in communications� acoustic� speech� and image processing or the biomedical area�

A particular interesting branch of digital signal processing is called multirate signal

processing� Over the last two decades� there has been a tremendous growth of research

in this area and the design of multirate systems� The basic signal transformation in

multirate signal processing is by means of lter banks� Here a signal is decomposed into

di�erent frequency bands along with appropriate manipulations of the sampling rate�

�
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Such spectral decompositions are the essence of the so�called subband coding ��� ���

and are closely related to signal decompositions by time��scale atoms� in particular�

wavelets which have originally been introduced in the mid ���
s for the analysis of

seismic data ���� to provide a time�scale �or time�frequency� representation of signals�

In contrast to the windowed Fourier transform� wavelet analysis allows for an analysis

with a variable window in the time�scale domain such that often a good compromise

between the time and frequency resolution� determined by Heisenberg�s uncertainty

principle� can be achieved� As we will see� lter banks are in many cases directly

related to wavelet decompositions�

A question that naturally arises in this context is the choice of wavelets and lter banks�

respectively� that are ideally suited for a given task� The design of wavelets and lter

banks which are optimal for signal compression has been addressed by several authors�

e�g�� see ���� ��� for some initial approaches� and a strong theoretical framework for

signal�adapted lter banks has been developed in recent years �	�� ���� Up to now� the

underlying ideas manly stick on this restricted area�

In recent studies� we have shown that an adaptation technique from signal compression

is an e�ective tool for real world pattern recognition tasks when using appropriate class

separability criteria instead of coding conditions ���� ��� ��� ��� ��� �
� ��� ��� ��� ��� �
�

��� ��� ��� �	�� In this chapter� we present the necessary foundation for signal�adapted

lter banks based on lattice structures which have not been used in pattern recognition

up to now� We present a detailed review on paraunitary lter banks� describing how

they are related to orthonormal decompositions of ���

A lter bank adaptation based on lattice structure rises up an optimization problem

in the space of lattice angles� We introduce two techniques to tackle with this prob�

lem� namely the ��orthogonality and genetic algorithms� These methods are ideally

suited for settings where sophisticated calculus based optimization strategies cannot

be applied� Such settings typically appear for our waveform recognition tasks in the

subsequent chapters�

Organization� In Section ��� we present the necessary fundamentals of multirate

signal processing� Section ��� introduces two�channel lter banks� with a special focus

on paraunitary lter banks� In Section ��	 we describe wavelet�like decompositions

�It goes without saying that the term �time� can be used interchangeably with �space� when dealing

with spatial rather than time dependent signals�
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of �� by time�scale atoms� Section ��� introduces the lattice structure in detail� We

also present two optimization �or adaptation� strategies for time�scale atoms in this

section� The conclusions of the chapter are given in Section ����

��� Multirate Signal Processing

Discrete�time signals are usually considered as vectors x � R
d or sequences x � �� with

samples x���� Unless stated otherwise� we assume the latter throughout this chapter�

In general� a discrete�time signal is obtained by the periodic sampling of a continuous�

time signal s�t� �t � R� with sampling period Ts such that

x��� � s��Ts�� Ts � R�

The sampling period gives the sampling frequency �s � ���Ts� Clearly� x can only

be an exact representation of s��� if the sampling theorem is fullled� In the following�

we will show how we can change the sampling rate of x to obtain a new signal y�

Such manipulations of the sampling rate are often desirable in discrete�time systems�

It goes without saying that this can always be seen as a new representation of the

underlying continuous signal with y��� � s��T s� where T s �� Ts� Let us denote the

frequency variable of continuous�time signals by � �rad�s� and of discrete�time signals

by � �rad�� We use capital letters when the signals are represented in Fourier domain

and z�domain� In other words� for a sequence x we have that X�ei�� �
P

n�Zx�n�e�i�n

and X�z� �
P

n�Zx�n�z�n� respectively� We will also use the discrete�time Fourier

series for M�periodic sequences with the analysis equation X�k� �
PM��

n�� x�n�W kn
M

where WM � e�i���M denotes the Mth root of unity and the synthesis equation x�n� �

M��
PM��

k�� X�k�W�kn
M �

Note that we have the normalization � � Ts� if x was obtained by sampling s���
with Ts� Throughout this thesis we� will restrict our interest almost exclusively on

the discrete�time signal and assume without a word that the underlying continuous

signal is sampled properly� There exists rich literature on multirate signal processing�

e�g�� see ��� �
� ��� ��� ���� where the theory can be found� However� there is a broad

lack of standardization in this literature concerning terms� sign conventions� system

theoretical conventions such as the consideration of causality and so on� Here we pick

out only those elements from the theory which are needed for the subsequent chapters
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using uniform notations and conventions which are most appropriate for our purpose

and to receive consistency� Therefore� our notation di�ers in other books on the topic�

The notation of system theoretical facts follows the standard work on discrete�time

signal processing by Oppenheim and Schafer �		��

����� Downsampling and Decimation

Downsamling by an integer factor of M denotes a reduction of the sampling rate of x

such that a new sequence y is obtained by

y��� � x�M ��� �������

Let x��n� be x�n� for n � 
��M���M � � � and zero otherwise and let ���� be unit impulse�

i�e�� we have that ��n� � � if n � 
 and ��n� � 
 else� By introducing the impulse

sequence v��� �
P

l�Z��� � lM � we have that x���� � x���v���� Note that the discrete�

time Fourier series expansion coe�cients of v are given by V �k� �
PM��

n�� ��n�W nk
M � �

�k � Z� such that the Fourier series of v reads v�n� � M��
PM��

k�� W�kn
M �n � Z��

Consequently� we have that x��n� � M��
PM��

k�� x�n�W�kn
M �n � Z� which yields

X ��z� �
X
n�Z

x��n�z�n

�
�

M

M��X
k��

X
n�Z

x�n�W�kn
M z�n

�
�

M

M��X
k��

X�zW k
M��

For y we have that

Y �z� �
X
n�Z

x��Mn�z�n � X ��z
�

M �

and nally� using our results above� the representation of y in the z�domain is given

by

Y �z� �
�

M

M��X
k��

X�z
�

MW k
M �� �������

Clearly� the process of discarding samples in ������� can lead to a loss of information�

In the frequency domain this is re�ected in the aliasing e�ect� To see this� consider
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Figure ���� Left hand� Downsampling with and without aliasing for M � � in the

frequency domain� �a� Spectra of two baseband signals of di�erent bandwidths� The

signal shown as solid line satises j�j � ��M whereas the dashed signal does not� �b�

The scaled versions �
�
jX�ei����j of the signals� �c� The shifted replica of the signals in

�b�� i�e�� �
�
jX�ei���������j� �d� The addition of the signals in �b� and �c� which results

in aliasing for the dashed signal� Right hand� the M�fold decimator�

������� on the unit circle and note that the Fourier transform X�ei�� of x is scaled by a

factor of M in frequency to obtain M��X�ei��M � of periodicity ��M � Y �ei�� is given by

the sum of M��X�ei��M � and its M � � frequency shifted versions M��X�ei�����k��M ��

�k � �� � � � �M�� the so�called alias components� Note that theses alias components

are shifted by �� to each other� For baseband signals this means that if M��X�ei��

is not bandlimited to j�j � ��M � i�e� jX�ei��j � 
 �j�j � ��M is not satised� this

summation results in aliasing since the spectra do overlap� Figure ����� �left hand�

shows the situation graphically for M � ��

Thus it is straightforward to apply a lter which ensures that a signal is su�ciently

bandlimited� Filtering followed by downsampling is called decimation� The whole

process is symbolized by the scheme Figure ��� �right hand�� We call this scheme a

M�fold decimator if downsampling by factor M is applied� The symbol with the down�

arrow is called a M�fold downsampler which implements the downsampling operation�

H�z� is a LTI lter� also called convolution �lter in mathematics� which is characterized

by its impulse response h or its transfer function H�z� �
P

n�Zh�n�z�n� respectively�

We call this lter a decimation �lter� Let � denote the convolution product such that
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y��� � �x � h���� �
P

n�Zx�n�h�� � n�� Then the relation between y and x of a M�fold

decimator is given by

y��� � �x � h��M ��� �������

����� Upsampling and Interpolation

Upsampling by an integer factor of L denotes an increase of the sampling rate of x

such that a new sequence y is obtained by

y��� �
X
k�Z

x�k���� � kL�� �����	�

which directly yields the representation in the z�domain

Y �z� �
X
n�Z

�X
k�Z

x�k���n � kL�

�
z�n � X�zL�� �������

Vaidyanathan ���� has graphically interpreted ������� as follows� on the unit circle we

have that Y �ei�� � X�ei�L�� This can be seen as the graph of a basic spectrum of

periodicity �� which is a L�fold compressed version of X�ei��� But the the graph

Y �ei�� also contains L�� frequency shifted copies of this basic spectrum� the so�called

images� The appearance of these images is called the imaging e�ect� see Figure ��� �left

hand� for an illustration of imaging� As we will see later� removing these images from

Y �ei�� by means of ltering is often desirable in discrete�time systems� Upsampling

followed by ltering is called interpolation� The resulting scheme is shown in Figure ���

�right hand� and is called L�fold interpolator if upsampling by a factor L is applied�

Here G�z� is a LTI lter and is known as interpolation or antiimaging �lter� The

system with the up�arrow is called a L�fold upsampler� Finally� the process of L�fold

interpolation in the time�domain reads

y��� �

��X
k�Z

x�k���� � kL�

�
� g
�

��� �
X
k�Z

x�k�g�� � kL�� �������

Note that neither the downsampler nor the upsampler are time�invariant systems by

������� and �����	�� respectively� Due to ������� we have that y�n� � x�Mn� which for

M 	 �� n 	 
 results in Mn 	 n� From �����	� we have that y�n� � x�n�L� which for

n � �L���L and L 	 � implies n�L 	 n� This shows that these systems are also not

causal �when leaving the consideration of a physical time scaling��
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Figure ���� Left hand� the imaging e�ect for L � �� �a� Spectrum of the original signal

jX�ei��j� �b� Spectrum jY �ei��j of the upsampled signal which shows the imaging e�ect�

Right hand� the L�fold interpolator�

����� The Polyphase Decomposition

A cornerstone in the theory and practice of multirate signal processing is the invention

of the polyphase decomposition ��� �	�� It simplies the theory and allows for an

e�cient implementation of decimators and interpolators� Especially� for the e�cient

realization of multirate lter banks it is well suited as we will see�

Noble Identities�� Before introducing the polyphase decomposition� let us have a

look at the noble identities ���� ��� which will turn out to be very useful for our further

discussions�

The rst noble identity aims at decimation lters of a special form� Suppose we want to

decimate a signal X�z� by a factor of M and a decimation lter h that has M�� zeros

between its consecutive nonzero coe�cients h�n�� n � 
��M���M� � � � � For lters of

this special form� the identity shown in Figure ��� holds�

Figure ���� The st noble identity
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To show this� note that X ��z� � X�z�H�zM� by ������� implies

Y��z� �
�

M

M��X
k��

X ��z
�

MW k
M�

�
�

M

M��X
k��

X�z
�

MW k
M�H

�
�z

�

MW k
M�M

�
�

�

M

M��X
k��

X�z
�

MW k
M�H�z� � Y��z��

The second noble identity aims at the interpolation� Suppose this time we want to

interpolate a signal X�z� by a factor of L and an interpolation lter that has L � �

zeros between the nonzero coe�cients� Then the identity in Figure ��	 holds since by

������� we have that

Y��z� � X ��z�G�zL� � X�zL�G�zL� � Y��z��

Figure ��	� The second noble identity

Polyphase Representation of Systems� Let Q�z� be a LTI lter� The decomposi�

tion of Q�z� into a number of J �J � N � j 	 ��� i�e�� multiple �poly� components of a

di�erent delay �phase� is called the polyphase decomposition of Q�z�� According to the

lines of Vaidyanathan ��
� we discriminate between two types of this decomposition�

The type I polyphase decomposition reads

Q�z� �
J��X
j��

z�jQp�
j �zJ� �������

with

Qp�
j �z� �

X
n�Z

q�Jn � j�z�n�

The type II polyphase decomposition uses a slightly modied decomposition and is given

by

Q�z� �
J��X
j��

z��J���j�Qp�
j �zJ� �������
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with

Qp�
j �z� � Qp�

J���j�z��

For our further discussions is important to see that the polyphase components of the

lters in ������� and ������� have the form needed for applying the noble identities�

Thus we may apply downsampling before ltering when using the polyphase compo�

nents of the decimation lters and the st noble identity for decimators� Equivalently�

by the application of the second noble identity to the polyphase components of an

interpolation lter� we can do the upsampling after the ltering for interpolators� We

will use these facts for the e�cient polyphase implementation of two�channel lter

banks in Section ������

��� Two�Channel Filter Banks

Two�channel lter banks consist of an analysis bank and a synthesis bank which decom�

pose an input signal into two subbands� In general� we have a low frequency and high

frequency signal which sampling rate is reduced by the analysis bank� The synthesis

bank reconstructs these subbands to obtain a common output signal�

����� Critical Sampling and Perfect Reconstruction

Two�channel lter banks allowing a perfect reconstruction of the input signal will be

investigated in this section� We will see that they are schemes of decimators and

interpolators with appropriately designed lters� For this� let H��z� and G��z� be ideal

lowpass lters such that

H��e
i�� �

�

�
G��e

i�� �

�
� for 
 � j�j � ���


 for ��� � j�j � ��

Let further H��z� and G��z� be ideal highpass lters which are modulated version of

the lters above such that

H��e
i�� � H��e

i������ �
�

�
G��e

i�� �
�

�
G��e

i������ �

�

 for 
 � j�j � ���

� for ��� � j�j � ��

The magnitude response of the lters H��z� and H��z� is shown in Figure ��� �top��

Assume the lters H��z� and H��z� are the decimation lters of ��fold decimators
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whereas G��z� and G��z� are the interpolation lters of ��fold interpolators� If we

arrange these systems as in Figure ��� we obtain a two�channel lter bank� The lters

H��z� and H��z� are called analysis �lters and G��z� and G��z� are known as synthesis

�lters�

Figure ���� Two�channel lter bank with critical sampling

Note that the subbands of such a lter bank have an absolute bandwidth of ���� From

Section ����� we know that downsampling by a factor of two is the limit here when

dealing with aliasing free systems� Therefore� such lter banks are called critically

sampled �lter banks or maximally decimated �lter banks� The corresponding spectra of

the signals in Figure ��� are shown symbolically in Figure ��� for a given input signal

X�ei��� Note that the relation between the spectra can be derived by ������� and ��������

respectively� on the unit circle� The described e�ects of bandwidth reduction before

downsampling and the removing of the images are noticeable� We see how decimators

and interpolators work together to obtain perfect reconstruction�

Clearly� in practice we cannot realize noncausal ideal lters with innite impulse re�

sponse� A straightforward approach to cope with this problem is to design lters with

narrow transition widths such that the a�ection of aliasing is low� However� this results

in very expensive lter systems� Therefore� one goes another way� We permit aliasing

and try to design synthesis lters which compensate it�

From Figure ��� we have that Ui�z� � Hi�z�X�z� which by ������� yields

Yi�z� �
�

�

�
Ui�z

�

� � � Ui��z �

� �
�
� i � 
� ��

Using this relation and ������� we have that

Vi�z� � Yi�z
��

�
�

�
�Ui�z� � Ui��z��

�
�

�
�Hi�z�X�z� � Hi��z�X��z�� � i � 
� ��
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Figure ���� The operation of a two�channel lter bank in the frequency domain using

ideal lters� The lowpass channel is denoted with i � 
 and highpass channel with

i � �� The magnitude response of the ideal analysis lters is shown at the top�

From Figure ��� we have nally that �X�z� � �X��z�� �X��z� � V��z�G��z��V��z�G��z�

which with the relation above yields

�X�z� �
�

�
�H��z�G��z� � H��z�G��z��� �z �

T �z�

X�z� �������

�
�

�
�H���z�G��z� � H���z�G��z��� �z �

A�z�

X��z��

Perfect Reconstruction� The term T �z� is the LTI transfer function of the lter

bank� The term A�z� stems from the alias component U��z �

� �� see Section ������ in

our derivation above and represents the aliasing of the lter bank� If A�z� � 
 we
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obtain a LTI lter bank although it involves the linear time�variant downsamples and

upsamplers� If we further have that T �z� � cz�l� �c � R�� � l � Z� we nd that

�X�z� � 
��cz�lX�z�� In this case� we obtain a lter bank which output signal is an

exact replica of the input signal up to a shift in time and an amplitude factor� Such

a lter bank is called a perfect reconstruction �lter bank� In our following discussions�

we restrict the term perfect construction directly to lter banks without amplitude

a�ection� i�e�� c � �� By introducing the notation

Hmod�z� �

�
H��z� H���z�

H��z� H���z�

	
� Gmod�z� �

�
G��z� G��z�

G���z� G���z�

	
�

the input output relation in ������� reads�
�X�z�

�X��z�

	
�

�

�
Gmod�z�Hmod�z�

�
X�z�

X��z�

	
�

Thus� letting I� a �	� identity matrix� the condition for perfect reconstruction without

delay reads

Gmod�z�Hmod�z� � �I�� ������
�

Here H�z� andG�z� are called the modulation matrix of the analysis bank and synthesis

bank� respectively�

����� Polyphase Implementation

We decompose the analysis lters into their polyphase components of type I by

H��z� � Hp�
�� �z�� � z��Hp�

�� �z�� ��������

and

H��z� � Hp�
�� �z�� � z��Hp�

�� �z��� ��������

If we now further decompose the synthesis lters into polyphase components of type

II� i�e��

G��z� � z��Gp�
���z�� � Gp�

���z��

and

G��z� � z��Gp�
���z�� � Gp�

���z���
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and apply the rst noble identity �Figure ���� for the analysis lters and second noble

identity �Figure ��	� for the synthesis lters we obtain the e�cient polyphase imple�

mentation of a two�channel lter bank shown in Figure ���� Here the downsampling is

applied before ltering in the analysis bank and the upsampling comes after ltering

in the synthesis bank�

Figure ���� Polyphase implementation of a two�channel critically sampled lter bank�

Let us the dene the polyphase matrix of the analysis bank Hpol�z� by

Hpol�z� �

�
Hp�

�� �z� Hp�
�� �z�

Hp�
�� �z� Hp�

�� �z�

	

and the polyphase matrix of the synthesis bank by

Gpol�z� �

�
Gp�

���z� Gp�
���z�

Gp�
���z� Gp�

���z�

	
�

Then using the signal notation in Figure ��� we obtain�
V��z�

V��z�

	
� Gpol�z�Hpol�z�

�
U��z�

U��z�

	
�

If we have that

Gpol�z�Hpol�z� � I�� ��������

we can remove the decimation and interpolation lters from the lter bank� Since

the remaining scheme of delays� downsamplers� and upsamplers produces only a delay�

�������� becomes the condition for a perfect reconstruction lter bank� When dealing

with causal systems� we have an additional delay in �������� such that Gpol�z�Hpol�z� �

z�lI�� �l � N��
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By introducing the delay matrix D � diag��� z��� and the �	 � discrete Fourier trans�

form matrix W� � �Wmn
� ��m�n��� we nd the relation

Hmod�z� � Hpol�z
��D�z�W� ������	�

for the modulation and polyphase matrix of the analysis bank�

����� Paraunitary Filter Banks

Two�channel lter banks which always satisfy the perfect reconstruction requirement

are paraunitary �lter banks� Before introducing these lter banks� let us dene the

following terms�

Paraconjugation� We dene the paraconjugation of a transfer function Q�z� by

eQ�z� � Q��z
����

Here all coe�cients q��� are conjugated and inverted in time� i�e�� in time�domain we

have that eq��� � q������ Let q be a nite impulse response �FIR� lter of order N with

real lter coe�cients� Then its paraconjugation is causal if we use an additional delay

such that

z�N eQ�z� � q�N � � z��q�N � ���� � � � ��z�Nq�
��

which reads in the time�domain as eq�n� � q�N � n� �n � 
� �� � � � � N�� Throughout

this thesis� the complex conjugation is always negligible since we will only consider real

lter coe�cients�

Paraunitary� We call a matrix Q�z� paraunitary if

QT �z���Q�z� � eQ�z�Q�z� � cI�� �z� c � R�� � ��������

If Q�z� is square� we have further that eQ�z�Q�z� � Q�z�eQ�z�� When dealing with

complex lters� we have also to conjugate the lter coe�cients of QT �z���� Note that

on the unit circle and c � � paraunitary is equivalent to unitary� Note also that a

product of paraunitary matrices is also paraunitary� We call a matrix which has c � �

in �������� normalized paraunitary �NP�� If a NP matrix Q�z� is FIR� i�e�� consists of

polynomial entries� and square� then its determinant is a pure delay due to ���������

i�e��

detQ�z� � �z�l� l � N �
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Of course� given a paraunitary polyphase matrix Hpol�z� the choice Gpol�z� �

H��
pol�z� � eHpol�z� results in a perfect reconstruction system due to ��������� Filter

banks with a NP polyphase matrix are called NP �lter banks in our further discus�

sions�

From ������	� we have that the modulation matrix Hmod�z� is paraunitary with

Hmod�z�eHmod�z� � �I�� ��������

if and only if the polyphase matrix has the form

Hpol�z�eHpol�z� � I�� ��������

Filter Relation� When dealing with a causal two�channel NP lter bank with FIR

lters of odd order N � the analysis lters H��z� and H��z� are related as

H��z� � sz�N eH���z�� where s � f��g and N � N � N odd� ��������

To show this� note that �������� yields

eHmod�z�Hmod�z� � �I��

which implies

eH��z�H��z� � eH��z�H��z� � �� ��������

H��z� eH���z� � H��z� eH���z� � 
� ������
�

The lters H��z� and H��z� are coprime� To see this� suppose H��z� and H��z� are

not coprime� and call their common factor F �z� such that H��z� � F �z�H �

��z� and

H��z� � F �z�H �

��z�� Then �������� implies that

eF �z�F �z��H �

��z�H �

��z� � eH �

��z�H �

��z�� � �

which for all zeros of F �z� is also zero� contradicting the fact that the right hand side

is a constant� Using this nding along with ������
�� we see that H��z� must have the

form H��z� � sz�NH���z�� where N is a positive integer which provides the causality

of H��z�� Substituting this in �������� gives eH��z�H��z� � s�H���z� eH���z� � � which

along with the fact that H��z� is a power symmetric half band �lter� i�e�� it satises

H��z� eH��z� � H���z� eH���z� � �� ��������
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directly yields s � f��g� From �������� we nally see that N has to be odd�

By Gmod�z� � eHmod�z� the synthesis lters of a paraunitary lter bank are given by

Gi�z� � eHi�z�� i � 
� �� ��������

If H��z� and H��z� are analysis lters of order N � a causal solution for the synthesis

lters is given by

Gi�z� � z�N eHi�z�� i � 
� �� N � N� N odd� ��������

Throughout this thesis we set s � �� in ��������� Note that �������� and �������� are

exactly the relations which give the well known Conjugate Quadrature Filters ���� ����

see also ����� Sometimes these lters are called Quadrature Mirror Filters although

this term was much earlier used for lters which only provide an alias free lter bank

that still su�ers from LTI distortions ����

��� Multiresolution Decompositions of �
�

So far� we have only considered two�channel lter banks� These lter banks are of

course of limited applicability� For most applications we are interested in lter banks

allowing a more �exible splitting than in only two subbands� But as we will see� such

lter banks can easily be constructed using NP two�channel lter banks as building

blocks cascaded in trees� Such tree structured lter banks directly lead to the idea

of multiresolution analysis and wavelet transforms ��
� ��� ��� ���� In the context of

wavelets� multiresolution is in general associated with a decomposition of the Hilbert

space of all square integrable functions L��R�� A fast algorithm for a multiresolution

analysis of L��R� was introduced in ���� that is based on cascaded NP lter banks with

zero mean highpass lter�

Indeed� wavelets are closely related to multirate lter banks and both subjects can

be treaded from a common unifying standpoint within the framework of multireso�

lution decompositions� The choice of an appropriate wavelet basis and the design of

suitable lter banks share the same theme� the construction of �good� bases for signal

representations�
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Discrete�Time Approach� Discrete�time multiresolution and wavelet concepts have

been proposed ���� ��� 	�� �see also the book of Vetterli � Kova�cevi�c ���� and Cohen �

Ryan ���� as a discrete�time pendant of the general wavelet theory� These concepts deal

with the decomposition of discrete�time signals into a set of discrete�time wavelets�

Accordingly� a wavelet is a sequence g with compact support that oscillates around zero

such that
P

n�Zg�n� � 
 rather than a continuous function in L��R� of zero mean� The

discrete�time formalism is straightforward for digital signal processing and will be used

exclusively in this thesis� The term discrete�time is left out in the following� unless

there is room for confusion� We assume without a word that the highpass lter of the

two�channel lter banks has a zero mean such that its impulse response corresponds

to a wavelet in our subsequent discussion� As usual� we will stick to the very same

two�channel building block on every level of tree structured lter banks �although only

the NP property on each level is needed��

����� Orthonormal Expansions via Filter Banks

It is known that NP lter banks provide orthonormal expansions of signals x � ��� see

���� ��� ��� for pioneering papers� For our further discussions� we use the signal and

lter notation from Figure ��� such that we have two analysis lters H��z�� H��z�� two

synthesis lters G��z�� G��z�� an input signal x� and an output signal �x� The output

signals of the analysis bank are denoted by y� and y�� respectively� In contrast to the

previous sections� we are only interested in orthonormal expansions by lter banks and

not their system theoretical meaning� Therefore� we deal with noncausal systems here

which simplies the notation� We assume that our lter bank is NP and produces no

delay�

Let U�z� and V �z� be LTI lters� Then the relation U�z�eV �z� � U��z�eV ��z� � c

�c � R� in the time�domain readsX
n�Z

u�n�v�n� k� � ����k
X
n�Z

u�n�v�n� k� � c��k�� k � Z�

Using this nding and the fact that �������� and �������� implies

G��z� eG��z� � G���z� eG���z� � ��

G��z� eG��z� � G���z� eG���z� � ��

G��z� eG��z� � G���z� eG���z� � 
�
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we obtain the following time�domain relations for a NP two�channel lter bankX
n�Z

g��n�g��n� �k� � ��k��X
n�Z

g��n�g��n� �k� � ��k��X
n�Z

g��n�g��n� �k� � 
�

for k � Z� Thus the impulse responses of a two�channel NP synthesis lter bank form

an orthonormal set by their even shifts� From Figure ��� a sequence x � �� has the

representation �x � x � �x� � �x�� The expansions of �x� and �x� are given by ������� with

expansion coe�cients yk �k � 
� �� in Figure ��� due to �������� More precisely� we

have that

x�n� � �x��n� � �x��n�

�
X
m�Z

y��m�g��n� �m� �
X
m�Z

y��m�g��n� �m�

�
X
m�Z

�X
i�Z

x�i�h���m� i�

�
g��n� �m�

�
X
m�Z

�X
i�Z

x�i�h���m� i�

�
g��n� �m��

Thus when noting that �������� implies hk��� � gk���� �k � 
� ��� this can be rewritten

as

x�n� �
X
m�Z

hx���� g��� � �m�i�� g��n� �m�

�
X
m�Z

hx���� g��� � �m�i�� g��n� �m�
���	��	�

and the set fg��� � �m�� g��� � �m� � m � Zg constitutes an orthonormal basis for ���

The signal splitting above is important for our further discussions since the subsequent

orthonormality relations follow simply by induction of this concept�

����� Octave�Band Decomposition

We are often interested in lter banks which decompose a given signal x into multiple

subbands of di�erent bandwidths� The most popular representative of such lter banks
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Figure ���� Analysis and synthesis bank of an octave�band tree�

is the octave�band tree� The corresponding octave�band or logarithmic spectrum is

very natural for various elds of signal processing� e�g�� in biomedical signal processing

�	�� An octave�band lter bank is shown in Figure ����

By the rst and second noble identity� see Section ������ we obtain the relation in

Figure ��� �top� for the analysis bank and in Figure ��� �bottom� for the synthesis

bank� respectively� of the octave�band tree� That is� we have separated the LTI lters

from the multirate operations� Applying these relations successively on the tree shown

in Figure ��� we obtain the scheme in Figure ���
� This scheme is called the equivalent

parallel structure of the octave�band tree� or more generally� a parallel structured �lter

bank� It is easy to check that the synthesis lters on level j � �� � � � � J in Figure ���


are given by

Qj���z� � G��z
�j���

j��Y
m��

G��z
�m�� ���	����

Qj���z� �

j��Y
m��

G��z
�m�� ���	����

and the analysis lters are the paraconjugate of these lters�
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Figure ���� Equalities for an analysis �top� and synthesis �bottom� lter bank tree�

Figure ���
� The equivalent parallel structure of the octave�band tree�

Hence with appropriate sampling the lters eQj�k�z� �k � 
� �� bring you from the

original signal x to the subband of level j without recursively applying H��z� and

H��z�� Analogously� the lters Qj�k�z� �k � 
� �� reconstruct each subband from level j�

Now we have a simple scheme of �j�fold decimators and interpolators �j � �� � � � � J��

Note that due to ���	���� and ���	���� the order of the lters on level j is given by

N �j� � ��j � ��N when dealing with FIR lters G��z� and G��z� of order N in the

NP building blocks� Let qmj�k � �qj�k�n� �jm��n�Z �k � 
� �� denote the translation of

qj�k by �jm samples� Due to the NP property of each two�channel building block� the
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impulse responses of the lters in ���	���� and ���	���� satisfy

hq�j���qmj��i�� � ��m�� ���	����

hqmi���qnj��i�� � ��i� j���m� n�� ���	����

hq�j���qmj��i�� � 
� ���	����

m�n � Z� i� j � �� � � � � J �

In direct analogy to Section ��	��� we may obtain all the signals of the parallel struc�

tured lter bank in Figure ���
 by �j�fold decimators and interpolators� In other

words� the reconstructed subbands xj �j � �� � � � � J� are given by ������� such that

xj �
P

m�Z
yj�k�m�qmj�k� Using �������� the expansion coe�cients �subbands� are given

yj�k�m� � hx�qmj�ki�� when noting that the analysis lters are the paraconjugated syn�

thesis lters�

Multiresolution Analysis� We can formalize the decomposition by octave�band

lter banks to a multiresolution analysis of ��� For this� we introduce the spaces

���� � �� and

�j�� � spanfqmj�� � m � Zg � �j�� � spanfqmj�� � m � Zg�
Note that fqmj�k � m � Zg forms an orthonormal basis of �j�i �k � 
� ��� Further we

have by ���	���� the multiresolution structure �J�� 
 � � � 
 ���� 
 ���� 
 ���� and by

���	���� that

�j���� � �j�� � �j��� ���	��
�

where � denotes the orthogonal sum� Thus the space �� can be decomposed as �� �

�J�� �
LJ

j�� �j�� and the set

qmJ���q

m
j�� � j � �� � � � � J  m � Z

�
���	����

constitutes an orthonormal basis for ���

The basis functions qj�k have a compact support when using FIR lters� Thus the

coe�cients yj�k �k � 
� �� allow for a representation of features being local in time� Note

that the support of the basis functions increases with j due to ���	���� and ���	�����

From ���	��
� we have further that �i����j�� for i �� j� Therefore� the subbands

carry non�redundant information of x with a resolution matched to a particular level

j� Since we are dealing with orthonormal expansions� the Parseval identity holds

for the individual subbands on level j �j � �� � � � � J� and their reconstructions� i�e��

kxj�kk��� � kyj�kk��� �k � 
� ���
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Figure ����� Uniform band lter bank in tree structure and parallel structure� analysis

bank �top� and synthesis bank �bottom��

����� Generalized Binary Tree Decompositions

Clearly� the concept above can easily be extended to an arbitray tree structured lter

bank� where the space ���� is decomposed into a more general structure of mutually

orthogonal subspaces by the two�channel NP building blocks such that

�j�k � �j����k � �j����k�� ���	����

for j � 
� �� � � � � J� k � 
� �� � � � � �j � �� Such binary trees can ever be expressed by

their equivalent parallel structures when using the relations in Figure ���� For a given

pair �j� k� � f�� � � � � Jg 	 f
� �� � � � � �J � �g� let us denote the lters of the equivalent

parallel structure by Qj�k�z�� For the translation of their impulse response by �jm

samples we use again the notation qmj�k� Suppose our aim is to decompose a signal in

J subbands with equal bandwidth by NP two�channel building blocks with synthesis

lters G��z� and G��z�� Then we have a xed J with lters QJ�k�z�� k � 
� �� � � � J � �

and the set

fqmJ�k � k � 
� �� � � � � �J � �� m � Zg
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Figure ����� The magnitude response of a uniform band synthesis bank with two�

channel building blocks �with lters G��z� and G��z�� and decomposition depth J � ��

For ideal lters G��z� and G��z� the magnitude of Q����z� and Q����z� is shown at the

top� The magnitude response of the whole synthesis bank for �real lters� is depicted

at the bottom�

constitutes an orthonormal basis for ���� due to the paraunitarity of the two�channel

building blocks� Decompositions of this kind are called uniform band decompositions

and are realized by uniform band �lter banks�

For instance� if J � � we obtain the tree structure and parallel structure of the lter

bank which is shown in Figure ����� By the relations in Figure ���� we have that

Q����z� � G��z�G��z
��� Q����z� � G��z�G��z

��� Q����z� � G��z�G��z
��� and Q����z� �

G��z�G��z
��� The magnitude response of these lters is shown in Figure ���� using

ideal �top� only Q����z� and Q����z�� and �real� lters �bottom� G��z� and G��z��

Wavelet Packet Decomposition� Decompositions by an arbitrary binary tree struc�

ture are called wavelet packet decompositions� see ��� ��� for details� Let x be the input

sequence of an arbitrary binary tree structured lter bank consisting of two�channel
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NP building blocks� Let us dene the projection operator

Pj�k � ���� � �j�k� j � �� � � � � J� k � 
� � � � � �j � �

with

Pj�kx �
X
m�Z

yj�k�m�qmj�k� ���	����

The expansion coe�cients are given by

yj�k�m� � hx�qmj�ki��� ���	��	�

Note that this expansion stems directly from ������� and ������� applied to the parallel

structure of binary trees�

Since octave�band decompositions are simply a special case of the wavelet packet de�

compositions� we do not strictly distinguish between them in this thesis and call these

methods in a generalized manner multiresolution or wavelet decompositions� Note that

not all basis functions of the tree are o�set free� i�e�� have a zero mean� and correspond

to wavelets� We call them in a generalized manner atoms or more precisely� time�scale

atoms since they are localized in time and scale� Note also that even in the case of

uniform band decompositions an increasing index k does not necessarily correspond

to higher frequency atoms �due to the periodicity of the lters� as one would expect�

In the context of wavelet packets� this fact underlies the so�called Paley ordered ����

wavelet packet tree and is noticeable in Figure ����� Of course� for representing a

signal x � ����� the tree of a uniform band decomposition has redundant subspaces

�j�k� �j � �� � � � � J� k � 
� � � � � �j � ��� Given a decomposition depth J � we will call

all the orthonormal bases associated with a uniform band binary tree a dictionary of

orthonormal bases� A collection of dictionaries is called a library� Thus we select the

dictionary from a library� It goes without saying that a dictionary is dened by a

two�channel NP building block�

Finite Length Signals� When dealing with nite length signals� i�e�� sample blocks

x � ���� 
 R
d � we use the wraparound technique �	�� ��� throughout this thesis� The

signals analyzed in our applications are highly correlated at their boundary points and

thus this technique does not lead to any serious distortions� We will also exclusively

deal with signals which dimension d is a power of �� With respect to the downsamling



���� SIGNAL�ADAPTED FILTER BANKS ��

operation� we a dene a maximal decomposition depth by Jmax � log� d� For a xed

level j and maximal decomposition depth of Jmax� we dene the set of indices

Tj � f
� �� � � � � �Jmax�j � �g�

Each subspace �j�k� �j � �� � � � � J� k � 
� � � � � �j � �� is spanned by the translations of

the corresponding atom qmj�� with m � Tj in the case of a block decomposition� Note

also that we have the standard Euclidean basis in R
d for j � 
�

��� Signal�Adapted Filter Banks

A general issue when applying wavelet decompositions is the design of an appropriate

NP building block� We can roughly distinguish between three approaches to lter bank

design� The rst and classical procedure is to design frequency selective lters� The

second approach has arisen with the development of wavelet theory and aims at the

design of very smooth or regular lters� see Section ������

The third approach consists in the design of signal�adapted perfect reconstruction lter

banks by means of energy compaction as approach to optimal subband coding and is

an active eld of research� see ��	� ��� �� ��� 	�� 	�� ��� �	� �� and ���� for a very

recent review article� Here the design aims at energy compaction and coding gain ����

maximization� respectively� often formulated as multistage optimization problem �for

a binary tree this means that we use distinct two�channel NP building blocks in the

tree�� The solution has to satisfy the so�called principal component property ���� i�e�� a

minimization of the mean�square error caused by reconstruction after dropping a given

number of subbands with the lowest variance� sometimes called the weakest subbands�

For lter banks which satisfy the conditions derived earlier for implementing wavelet

expansions� this corresponds to the design of optimal orthonormal wavelets for signal

compression� see ���� ��� �	� for a separated and somewhat independent treatment of

wavelets� Clearly� such compaction lters are closely related to the Karhunen�Lo�eve

transform ��	� ��� �� �� �
�� see also Section ��� and for a FIR uniform band lter bank

with J bands where the order of the lters is restricted to be less than J � the optimal

solution is the Karhunen�Lo�eve Coder ��	��
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����� Lattice Structure Based Filter Banks

In the initial paper of Delsarte et al� ���� on signal�adapted lter banks with

multiresolution architecture� the lattice structure was utilized for a multistage cod�

ing gain maximization as e�cient approximation of the Karhunen�Lo!eve trans�

form� Here signicant improvements were observed in contrast to non�adapted

implementations for image compression� In recent studies� we have shown that

an adaptation based on lattice structure and appropriate class separability crite�

ria is an e�ective tool for real world pattern recognition tasks in various settings

���� ��� ��� ��� ��� �
� ��� ��� ��� ��� �
� ��� ��� ��� �	�� Although the theory of

signal�adapted lter banks is more sophisticated nowadays as in ����� e�g�� see �	�� 	��

for a rst globally optimal solution with constraint lter lengths and ��� for a state of

the art report� we rely on the lattice structure which is well suited for our purpose� It

provides a very e�cient parameterization and can even be applied in settings where

the objective function seems not to allow for sophisticated calculus based optimization

strategies � as for applications in machine learning we have in mind�

Lattice Decomposition� In our further discussions� we follow the lines of

Vaidyanathan � Hoang ���� �
� and Strang � Nguyen ����� Let Hpol�z� be the NP

polyphase matrix of the analysis lter bank consisting of real FIR lters H��z� and

H��z� of order �K � �� We introduce the Givens rotation ���� that is dened as

R�
� �

�
cos
 sin


� sin
 cos


	
�

We show that Hpol�z� has always a decomposition of the form

Hpol�z� �

�
K��Y
i��

R�
i�D�z�

�
R�
K�� ��������

where 
K � �
� ���� 
i � �
� �� �i � 
� � � � � K � ��� For this purpose� we introduce the

matrices

�i �

�
h���i� h���i � ��

h���i� h���i � ��

	
� i � 
� �� � � � � K�

Then we can express the polyphase matrix as

HK
pol�z� �

KX
i��

�iz
�i� ��������
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The superscript K of the polyphase matrix will become clear later� Substituting

�������� in �������� we nd
KX
i��

�T
i �i�m � I���m�

which implies that �T
��K � �� Thus �� and �K are singular matrices so that there

exists a real nonzero vector u � �sin
K � cos
K�T �
K � �
� ��� such that

uT�� � �� ��������

Now we consider the product RT �
��H
K
pol�z� which we can express as�

cos 
� � sin
�

sin
� cos
�

	
KX
i��

�iz
�i� ��������

By �������� this product can be rewritten as

RT �
��H
K
pol�z� � D�z�HK��

pol �z�

and thus

HK
pol�z� � R�
��D�z�HK��

pol �z�� ��������

Here HK��
pol �z� has a reduced degree in the sense that detHK��

pol �z� � z � detHK
pol�z��

It is easy to check that HK��
pol �z� is also NP since we have that eHK

pol�z�HK
pol�z� �eHK��

pol �z�HK��
pol �z� due to the orthogonality of R�
k� and paraunitarity of D�z��

Hence we have extracted a NP building block of degree one to reduce the degree of

HK
pol�z�� Applying this reduction K times� we arrive at a constant orthogonal matrix

H�
pol�z�jz�� with determinant �� where we assume a positive sign in the following� i�e��

detH�
pol�z�jz�� � �� Clearly� we can express the orthogonal matrix H�

pol�z�jz�� by the

Givens rotation such that H�
pol�z�jz�� � R�
K� �
K � �
� ����� Summarizing these

facts� we conclude that HK
pol�z� has always a lattice decomposition of the form ���������

The polyphase implementation by the lattice structure is shown in Figure ����� Note

that we have simply replaced the LTI lters in Figure ��� by the lattice structure to

obtain Figure �����

Highpass with Zero Mean� For most application we wish to consider highpass

lters that have a zero mean� i�e�� H��z�jz�� � 
� which is also the necessary condition

for implementing wavelet decompositions in the sense of our earlier discussions�
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Figure ����� Lattice implementation of a two�channel NP analysis bank with input

signal x and output signals y� and y��

Note that with H��z�jz�� � 
 �������� implies H��z�jz��� � 
� By �������� this yields

H��z�jz�� � �p� where we again assume a positive sign� Thus using �������� have

that H��z�jz�� � �H��z�jz��� �
p

�� Finally� these observations give along with the

type one polyphase decompositions �������� and ��������

Hpol�z�jz�� �
�p
�

�
� �

�� �

�
� �����	
�

Since we have by �������� that

Hpol�z�jz�� �

�� cos�
KP
i��


i� sin�
KP
i��


i�

� sin�
KP
i��


i� cos�
KP
i��


i�

���� �
we obtain

KX
i��


i � �

	
�mod ����

Let 
K be the residue of �
�
�PK��

i�� 
i modulo �� in �
� ���� Then the space

PK � f� � �
�� � � � � 
K��� � 
i � �
� ��g

can serve to parameterize all two�channel FIR NP lter banks of order N � �K � �

with real lter coe�cients and at least one vanishing moment of the highpass lter�

i�e�� a zero mean� To emphasize this parameterization� we will use the superscript �

later� For atoms of a binary tree� dened by a pair �j� k�� we use the notation qj�k��� to

show this dependence� For a parameterization with more than one vanishing moment

of the highpass lter� we refer to the method of Zou et al� �����
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Symmetry� The parameter space contains also a symmetry which leads to redun�

dancy in some settings� However� we cannot exploit this symmetry in our applications�

Therefore� we only sketch some facts here and refer to ���� for a detailed discussion

and proofs� It can be shown that half of the parameter space corresponds to wavelets

which are time reversals of the other half� A subspace of the parameter space that

covers all wavelets but exclude their time reversals is given by choosing 
K�� from the

interval �
� ���� and 
�� � � � � 
K�� from the interval �
� ��� see ����� This may be useful

in some settings as the parameter space is reduced� resulting in an easier optimization

of the lattice angles� see Section �� for an example�

Implementation� The lattice structure is accepted to o�er the lowest implementation

complexity among all known FIR NP structures with real lter coe�cients� e�g�� see

���� �
� ��� �	� ��� 	��� If cos
i �� 
 �i in ��������� then the rotation matrix can be

expressed as

R�
i� � cos
i

�
� �i

��i �

	
� where �i � tan
i�

The factors cos
i can be summarized to a common factor c of the lattice structure

c �
KY
i��

cos
i �
KY
i��

�� � ��
i �
�
�

� �

An implementation based on this observation is called the two multiplier QMF lattice

��
�� The total number of multiplications is then given by ��K � �� � � which is nearly

halve as many as for the direct form when noting that the order of the corresponding

lters is given by N � �K � �� Each lattice element operates at half of the input rate

making the lattice structure very attractive for e�cient implementations� When using

the discretization by the Coordinate Rotation Digital Computer�Algorithm ���� ��� for

the lattice angles in ��������� another e�cient implementation can be used which is

described in �	���

Despite the increasing computational capabilities and decreasing size and cost of so�

called general�purpose computational components� e�g�� microprocessors and dedicated

signal processing chips� special purpose designs are often needed in order to meet

certain requirements� Such application specic requirements are often considered as

very large scale integration �VLSI� metrics such as power consumption� computational

area� and execution time� For the purpose of an e�cient implementation of cascaded

two�channel FIR NP lter banks in direct form ����� several architectures are known
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which mainly di�er in the way that intermediate results are stored and routed� For

instance� implementations based on systolic routing networks� also called Data Format

Converters ����� distributed memory ����� and implementations that use a minimum

number of registers �	��� However� the e�ective algorithmic description of two�channel

NP lter banks by the lattice structure allows for improved designs resulting in the most

e�cient VLSI architectures of these lter banks known ���� ��� ��� �	� ���� Another

advantage is that the NP property of �������� is structurally induced ����� that is� it

remains NP even under lattice coe�cient quantization ���� making it a perfect scheme

for any xed�point implementations�

Design�Techniques� Of course� since the lattice structure above remains NP regard�

less of the lattice angles� it is a suitable design tool for half band lters� Let H�

� �ei��

be the lowpass analysis lter associated with the parameterized lattice structure and

let �s be the stopband edge �the lower bound of the stopband� i�e�� the stopband lives

on ��s� ���� then for an approximation of ideal lters� we have to nd lattice angles

which minimize
R �
�s
jH�

� �ei��j�d�� That the passband behaves well is guaranteed due

to the power symmetric property� see ��������� The characteristics of the other lters

can be obtained from this prototype by �������� and ��������� respectively� For detailed

descriptions of constraint design techniques in the Fourier domain based on the lattice

structure we refer to ���� �
� since we are only interested in signal�adapted designs in

the following� Note that the parameterization of the polyphase matrix �������� can

also be implemented by lifting steps� also known as ladder structure in engineering

����� which are frequently used for designing non�paraunitary �biorthogonal� perfect

reconstruction schemes� see ���� for details� However� in this thesis we will rely on the

implementation based on the lattice structure due its availability in already existing

very e�cient architectures which are especially needed when dealing with algorithms

for implantable low�power � low�voltage devices in the following� We also refer to

literature for other constrained design procedures in the Fourier domain which are not

appropriate for our purpose such as spectral factorization ��
� ��� ��� ����

Regularity is a smoothness property of continuous�time wavelets derived from innitely

iterated NP lters and the H�older exponent� is a common measure for it� e�g�� see ����

�If f � Cn�R� but f �� Cn���R�� then its H�older exponent s is given by

s � n� inf
x

�
lim

jdj���
inf

log jf �n��x� d�� f �n��x�j

log jdj

�
�
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Figure ���	� Left hand� two wavelets with distinct degree of second local variation�

The smoother one� that is the atom with a lower second local variation� is the left one�

Right hand� the matrix X� the darker regions correspond to a lower variation� i�e��

smoother wavelets�

The estimate of the smoothness of the continuous functions from the underlying lter

has been addressed by several authors ��
� 	�� �� 	�� ��� ���� But indeed� the only merit

of regularity for practical tasks in digital signal processing is when smooth lters are

need such as in image compression or hybrid pattern recognition and coding schemes

where a reconstruction by non�smooth atoms may produce artifacts� However� here

more straightforward measures can be used such as the ��local variation � � see �	�� ���

and references therein� which is the �� norm of the di�erences of �th order of a atom

qj�k �j� k xed�� More precisely� let us denote the �th order di�erences by

D��� qj�k� �
�X
i��

����i

�
�

i

�
qj�k�� � i��

then we have that ��qj�k� � jjD��� qj�k�jj��� Figure ���	 �left hand� shows two atoms

q��� with distinct degrees of second local variation� i�e�� � � �� The matrix X �

���q����
�� 
����
�
�������

which re�ects the second order local variation of q����
�� 
�� in

the parameter space is depicted in Figure ���	 �right hand��

����� Lattice Optimization by Genetic Algorithms

In the subsequent chapters� we are interest in a lattice optimization for the purpose of

pattern recognition� Throughout this thesis� we restrict ourselves to an optimization by

some class separability criterion rather than direct classication performance that can

be very time consuming for sophisticated learning machines which also involve large
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optimization problems� Here a lattice optimization should provide an adaptation of

time�scale atoms in the sense� that discriminatory information among signal classes is

illuminated� Solving our subsequent lattice optimization problems analytically seems

to be infeasible� The arising adaptation functionals seem not to allow for sophisticated

calculus based strategies in the continuous parameter space� In particular� simple hill

climbing methods are doomed to fail due to local minima of the adaptation functionals�

Here we present two methods to cope with this problem�

��Orthogonality� Now we introduce a reduction strategy of the discretized parameter

space� We introduce a discrete grid

PK
T � f� � �
�� � � � � 
K��� � 
i � Dg � D �

n��
T

� � � 
� � � � � T � �
o

in PK � Solving our adaptation tasks by evaluating the objective functions at each grid

point is clearly one possibility which may be implemented for a small K and a coarse

gird� However� for a larger K this can be time consuming� To cope with this problem�

we have introduced a compression of the PK
T to obtain a sparse parameter space of

atoms with a predened degree of orthogonality to each other ����� Given an arbitrary

pair �j� k� of a binary tree and a positive number � � �� we select a maximal subset

PK
� of PK

T such that��hqj�k����qj�k���i��
�� � �� ��� � PK

� with � �� �� �����	��

The distinct atoms in �����	�� satisfy the strengthened Cauchy�Schwarz inequality� i�e��

they are ��orthogonal� That is� the smaller � the more orthogonal are the atoms

corresponding to PK
� � In a way� � steers the redundancy of our parameter space�

Such a compression of the parameter space can be signicant even for a large �� In�

deed� for wavelets corresponding to an octave�band tree� we achieved a compression of

jPK
� j�jPK

T j � 
��� if K � �� T � �� and � � 
��� on level j � 	 in ����� Such a large �

does nearly not a�ect the adaptation �exibility since only atoms are discarded which

result in relatively similar decompositions� However� the reduction of computation cost

is tremendous as the example mentioned above shows�
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Genetic Algorithms� The concept of genetic algorithms �GA� was rstly introduced

by Holland ����� Basically� genetic algorithms are stochastic search procedures often

motivated by the mechanics of natural selection and genetics ���� �
�� Giving the gist

"In nature� the individuals constituting a population adapt to the environment in which

they live� The ttest individual have the highest probability of survival and tend to

increase in numbers whereas less t individual tend to die out� This survival of the

ttest Darwinian principle is the idea of GA based search procedures"�

Goldberg ��
� pointed out the following four points in that GAs di�er from conventional

search or optimization procedures�

� GAs work with a coding set of parameters not with the parameters themselves�

� GAs search from a population of points� not from a single point�

� GAs use payo� �objective function� information� not derivatives or other auxiliary

knowledge�

� GAs use probabilistic transition rules� not deterministic rules�

Accordingly� GAs are often described as a global search method that does not use gra�

dient information and may be applied to nondi�erentiable functions as well as functions

with multiple local minima ��
�� Here we only sketch some fundamentals of GAs and

refer to ��
� 	
� for detailed discussions along with many examples of applications�

Assume we have to maximize an objective function given a search space� To apply

GAs� the fundamental thing we have to do is to represent the search space by arti�cial

chromosomes � known as the encoding of the problem� In the classical �canonical�

GA� to which we restrict our interest here� these chromosomes are binary strings of

length l� The rst step for the GA is then to generate an initial population of size n

of these chromosomes� i�e�� an initial population of a number of n encoded candidate

solutions to the problem� In the most common case� this initial population is generated

randomly�

For our further discussions� it is helpful to consider the execution of a GA as a two stage

process� It starts with a current population of size n �which is the initial population

at the beginning�� Then we wish to create the next population again of size n which

hopefully will contain �better� solutions to our problem� For this� we introduce an

intermediate population between the current and the next population�
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This intermediate population is created by applying a selection operator to the current

population� Selection is a process in which individual chromosomes are copied accord�

ing to their objective function values� In a way� now the "survival of the ttest strategy"

comes into play� For this� the individual chromosomes of the current population are

evaluated �by the objective function� and assigned with a so�called �tness�value� Here

the tness is dened by� fi�f where fi is the evaluation associated with a particular

chromosome i �i � �� � � � � n� and f is the average evaluation associated with all n chro�

mosomes of the population� Now the probability that chromosomes are copied and

placed in the intermediate population is in proportion to their tness� In other words�

the probability that chromosomes with a higher tness value are copied is also higher�

Of course� in this selection the very same chromosome can be selected more than once�

To the intermediate population a crossover operator is applied� For this� all chro�

mosomes in the population are mated at random� Then each pair of chromosomes

undergoes a crossover with a predened probability pc in the following manner� an in�

teger position k is selected uniformly at random between � and the chromosome length

less one� i�e�� l � �� Two new chromosomes are then created by swapping all the bits

between positions k � � and l inclusively� The resulting chromosomes form our next

population� Now the next population becomes the current population and so on� It

can be shown that the average tness f increases by a successive application these

steps ��
�� Each iteration of this process is called a generation�

Additionally to the crossover� there is optionally a mutation operator applied to in�

termediate population to create the next population� This operator �ips some bits of

a chromosome� Mutation can occur at each bit position in a chromosome with some

probability pm� usually very low� e�g�� 
�
� or 
�

� ��
� 	
�� This operator introduces

some noise in the main algorithm above and may help to escape from local minima�

As termination criteria for the GA described above� we may use the stabilization of

GA �new generations do not improve the results� or a predened number of iterations�

Settings� Throughout this thesis� we work with K � � in ��������� In this way� we

obtain lters of order �� The corresponding atoms have a relatively small support

in time and may capture discriminating information in morphological structures of

a short duration� Non�adapted lters of this order are frequently used in waveform

recognition� e�g�� see �	� ���� Consequently� we have to optimize the lattice structure

with respect to the angles � � �
�� 
��� For all experiments� we use a l � 	
 bit
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chromosome encoding for each angle in �
� ��� An initial population of n � �

 is

generated randomly� The probabilities for crossover and mutation are set to pc � 
���

and pm � 
�

�� respectively� Such settings are common in practice ��
� 	
� and the

GA stabilized with approximately � generations in average�

��� Conclusions

The theory of signal�adapted lter banks has been developed in recent years� Up to

now� the underlying ideas mainly stick on this restricted area although they may have

merit in other application elds such as machine learning�

In this chapter� we have presented the fundamentals needed for lattice structure based

signal�adapted lter banks and time�scale atoms� respectively� We have in detail

reviewed the theory of NP two�channel lter banks which can be used to realize de�

compositions of �� into time�scale atoms� In particular� we have discussed octave�band

multiresolution decomposition and wavelet packets�

We have shown that every NP two�channel FIR lter bank with real coe�cients can

be represented by the lattice structure� We have discussed the e�ciency of the lat�

tice structure for implementation and sketched some properties such as a zero mean

constraint� a symmetry of the associated parameter space� and the design of smooth

atoms�

In general� the optimization of the lattice angles represents a challenge in most set�

tings ���� ���� To cope with this problem� we have introduced two techniques� namely

��orthogonality and GAs� The former can be seen as a compression strategy for the

lattice parameter space to obtain a more e�cient sparse search space for atoms with a

predened degree of orthogonality to each other� In this way� all atoms which produce

a similar decomposition are excluded from the parameter space� GAs are global search

methods that only need objective function information� For applying them e�ciently�

the objective function must allow for a fast evaluation� For the optimization or adap�

tation of time�scale atoms� e�g�� based on decomposition information� this fact is taken

into account by the e�ciency of the lattice structure�
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