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Technical Overview
But…We cannot do that with Fourier Transform….
Time - frequency representation and the STFT
Continuous wavelet transform
Multiresolution analysis and discrete wavelet transform (DWT)

Application Overview
Conventional Applications: Data compression, denoising,  solution of  PDEs, 
biomedical signal analysis.
Unconventional applications
Yes…We can do that with wavelets too…

Historical Overview
1807 ~ 1940s: The reign of the Fourier Transform
1940s ~ 1970s: STFT and Subband Coding
1980s & 1990s: The Wavelet Transform and MRA

The Story of Wavelets

What is a Transform
and Why Do we Need One ?

Transform: A mathematical operation that takes a function or sequence 
and maps it into another one

Transforms are good things because…

The transform of a function may give additional /hidden information 
about the original function, which may not be available /obvious
otherwise

The transform of an equation may be easier to solve than the original 
equation (recall your fond memories of Laplace transforms in DFQs)

The transform of a function/sequence may require less storage, hence 
provide data compression / reduction

An operation may be easier to apply on the transformed function, rather 
than the original function (recall other fond memories on convolution).



December, 21, 1807

Jean B. Joseph Fourier

(1768-1830)

“An arbitrary function, continuous or with 
discontinuities, defined in a finite interval by an 
arbitrarily capricious graph  can always be 
expressed as a sum of sinusoids”

J.B.J. Fourier

Complex function representation through simple building blocks
Basis functions

Using only a few blocks Compressed representation

Using sinusoids as building blocks Fourier transform 
Frequency domain representation of the function
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Recall that FT uses complex exponentials (sinusoids) as building
blocks.

For each frequency of complex exponential, the sinusoid at that
frequency is compared to the signal.

If the signal consists of that frequency, the correlation is high 
large FT coefficients.

If the signal does not have any spectral component at a frequency, 
the correlation at that frequency is low / zero, small / zero FT 
coefficient.

How Does FT Work Anyway?
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FT At Work
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FT At Work
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FT At Work
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Complex exponentials 
(sinusoids) as basis 

functions:

F

An ultrasonic A-scan using 1.5 MHz transducer, sampled at 10 MHz

Stationary and Non-stationary Signals

FT identifies all spectral components present in the signal, however it 
does not provide any information regarding the temporal (time) 
localization of these components. Why?
Stationary signals consist of spectral components that do not change in 
time 

all spectral components exist at all times
no need to know any time information
FT works well for stationary signals

However, non-stationary signals consists of time varying spectral 
components

How do we find out which spectral component appears when?
FT only provides what spectral components exist , not where in time 
they are located.
Need some other ways to determine time localization of spectral 
components



Stationary and Non-stationary Signals

Stationary signals’ spectral characteristics do not change with time 

Non-stationary signals have time varying spectra
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Stationary vs. Non-Stationary

Perfect knowledge of what 
frequencies exist, but no 
information about where 
these frequencies are 
located in time
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Sinusoids and exponentials 

Stretch into infinity in time, no time localization

Instantaneous in frequency, perfect spectral localization

Global analysis does not allow analysis of non-stationary signals 

Need a local analysis scheme for a time-frequency representation 
(TFR) of nonstationary signals

Windowed F.T. or Short Time F.T. (STFT) : Segmenting the signal into 
narrow time intervals, narrow enough to be considered stationary, and 
then take the Fourier transform of each segment, Gabor 1946.

Followed by other TFRs, which differed from each other by the 
selection of the windowing function 

Shortcomings of the FTShortcomings of the FT

Short Time Fourier Transform
(STFT)

1. Choose a window function of finite length

2. Place the window on top of the signal at t=0

3. Truncate the signal using this window

4. Compute the FT of the truncated signal, save.

5. Incrementally slide the window to the right 

6. Go to step 3, until window reaches the end of the signal

For each time location where the window is centered, we 
obtain a different FT

Hence, each FT provides the spectral information of a 
separate time-slice of the signal, providing simultaneous time 
and frequency information 



STFT
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STFT At Work
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STFT

STFT provides the time information by computing a different FTs for 
consecutive time intervals, and then putting them together

Time-Frequency Representation (TFR)
Maps 1-D time domain signals to 2-D time-frequency signals

Consecutive time intervals of the signal are obtained by truncating the 
signal using a sliding windowing function
How to choose the windowing function?

What shape? Rectangular, Gaussian, Elliptic…?
How wide? 

Wider window require less time steps low time resolution
Also, window should be narrow enough to make sure that the portion of 
the signal falling within the window is stationary
Can we choose an arbitrarily narrow window…?

Selection of STFT Window

Two extreme cases:
W(t) infinitely long:                        STFT turns into FT, providing 
excellent frequency information (good frequency resolution), but no time 
information
W(t) infinitely short:

STFT then gives the time signal back, with a phase factor. Excellent 
time information (good time resolution), but no frequency information

Wide analysis window poor time resolution, good frequency resolution
Narrow analysis window good time resolution, poor frequency resolution
Once the window is chosen, the resolution is set for both time and frequency.
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Heisenberg Principle

π4
1≥∆⋅∆ ft

Time resolution: How well 
two spikes in time can be 
separated from each other in 
the transform domain

Frequency resolution: How 
well two spectral components 
can be separated from each 
other in the transform domain

Both time and frequency resolutions cannot be arbitrarily high!!!
We cannot precisely know at what time instance a frequency component is 

located. We can only know what interval of frequencies are present in which time 
intervals

The Wavelet Transform

Overcomes the preset resolution problem of the STFT by using a 
variable length window
Analysis windows of different lengths are used for different 
frequencies:

Analysis of high frequencies Use narrower windows for 
better time resolution
Analysis of low frequencies Use wider windows for better 
frequency resolution

This works well, if the signal to be analyzed mainly consists of slowly 
varying characteristics with occasional short high frequency bursts.
Heisenberg principle still holds!!!
The function used to window the signal is called the wavelet 

See Blackboard for the Mathematics



High frequency  (small scale)

WT at Work
Low frequency  (large scale)

WT at Work



WT at Work
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Discrete Wavelet Transform

CWT computed by computers is really not CWT, it is a discretized
version of the CWT.

The resolution of the time-frequency grid can be controlled (within 
Heisenberg’s inequality), can be controlled by time and scale step 
sizes.

Often this results in a very redundant representation

How to discretize the continuous time-frequency plane, so that the 
representation is non-redundant?

Sample the time-frequency plane on a dyadic (octave) grid

SEE BLACKBOARD

ECG- Compression



Multiresolution

0 ms 20 ms 40 ms 60 ms 80 ms 100 ms 120 ms
-1

0

1

-1

0

1

-0,2

0,0

0,2

t i m et i m e

-1

0

1

-0,2

0,0

0,2

-1

0

1

-0,5

0,0

0,5

-1

0

1

-1

0

1

0 ms 20 ms 40 ms 60 ms 80 ms 100 ms 120 ms
-1

0

1

0 ms 20 ms 40 ms 60 ms 80 ms 100 ms 120 ms
-1

0

1

A1 x

A2 x

A3 x

A4 x

A5 x

B1 x

B2 x

B3 x

B4 x

B5 x

x


