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The Story of Wavelets

< Technical Overview
& But...We cannot do that with Fourier Transform. ...
Y Time - frequency representation and the STFT
& Continuous wavelet transform
& Multiresolution analysis and discrete wavelet transform (DWT)

< Application Overview

& Conventional Applications: Data compression, denoising, solution of PDEs,
biomedical signal analysis.

Y Unconventional applications
Y Yes...We can do that with wavelets too...

< Historical Overview
Y 1807 ~ 1940s: The reign of the Fourier Transform
& 1940s ~ 1970s: STFT and Subband Coding
L 1980s & 1990s: The Wavelet Transform and MRA

What is a Transform
and Why Do we Need One ?

< Transform: A mathematical operation that takes a function or sequence
and maps it into another one
< Transforms are good things because. ..

Y The transform of a function may give additional /hidden information
about the original function, which may not be available /obvious
otherwise

Y The transform of an equation may be easier to solve than the original
equation (recall your fond memories of Laplace transforms in DFQs)

Y The transform of a function/sequence may require less storage, hence
provide data compression / reduction

Y An operation may be easier to apply on the transformed function, rather
than the original function (recall other fond memories on convolution).




December, 21, 1807

“An arbitrary function, continuous or with
discontinuities, defined in a finite interval by an
arbitrarily capricious graph can always be
expressed as a sum of sinusoids”’

J.B.J. Fourier

Jean B. Joseph Fourier
(1768-1830)

Complex Function = Z (weight), @ (Simple Function),

i

< Complex function representation through simple building blocks

& Basis functions
< Using only a few blocks =» Compressed representation

< Using sinusoids as building blocks =» Fourier transform

Y% Frequency domain representation of the function

Ro=[foe™a  fo=,_[Roe"do




How Does FT Work Anyway?

< Recall that FT uses complex exponentials (sinusoids) as building
blocks.

[ e/ P = cos (wt )+ jsin (a)t)]

<& For each frequency of complex exponential, the sinusoid at that
frequency is compared to the signal.

< If the signal consists of that frequency, the correlation is high =
large FT coefficients.

[ F(w)= j f(t)e 7 dy f(t)=$ j F(w)e!“dw }

< If the signal does not have any spectral component at a frequency,
the correlation at that frequency is low / zero, = small / zero FT
coefficient.

FT At Work

g Hz

x,(t)=cos(27-5-t)

x,(t)=cos(27-25-¢)

x,(t) =cos(27-50-1)




FT At Work

el : : : : : : : : :
B e N
5O ~Fr X@) b
I:|IZ| 1 IEI QEEI 3=D 4:] EID EEEI ?'ID BEEI 9:] 100
BOO . . T T : . T . T
£ 400 '
w0 F.oxw Em
0
BOO ; ; . . ; . ; .
| R S . L
2| R S B R
%) E. X,(w) 1 N
1] 10 20 30 40 a0 G0 70 a0 a0 100
Freguency
FT At Work
. A signal with three frequency components
T T T
2 __________ | | S | RN F ____% ___________________ | [ | T
x,(t)=cos(2m-5-¢) 1
+cos(27r-25-1) I [ ARRATIRIN j
+cos(27-50-¢) =

x,(1) <—£> X, (w)

g00

500

400

300

200

100

50
Freguency, Hz.




FT At Work

Complex exponentials
(sinusoids) as basis

il ‘_ | q [ functions:

F(w)= T f(t)-e’™dt
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An ultrasonic A-scan using 1.5 MHz transducer, sampled at 10 MHz

Stationary and Non-stationary Signals

< FT identifies all spectral components present in the signal, however it
does not provide any information regarding the temporal (time)
localization of these components. Why?

< Stationary signals consist of spectral components that do not change in
time
G all spectral components exist at all times
% no need to know any time information
% FT works well for stationary signals

< However, non-stationary signals consists of time varying spectral
components

% How do we find out which spectral component appears when?

% FT only provides what spectral components exist , not where in time
they are located.

Y Need some other ways to determine time localization of spectral
components




Stationary and Non-stationary Signals

< Stationary signals’ spectral characteristics do not change with time

A signal with three frequency components

x,(t) =cos(27-5-1) IR PN IFRLETR PO N O Y IO
+cos(27-25-1) B I i
+cos(277-50-1) b A L I Ll L

< Non-stationary signals have time varying spectra

A signal with three frequency components at warying times

xO)=[x®x,®x,] [\ ]|
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SHORTCOMINGS OF THE FT

* Sinusoids and exponentials
& Stretch into infinity in time, - no time localization
Y Instantaneous in frequency, - perfect spectral localization

Y Global analysis does not allow analysis of non-stationary signals

* Need a local analysis scheme for a time-frequency representation
(TFR) of nonstationary signals

% Windowed F.T. or Short Time F.T. (STFT) : Segmenting the signal into
narrow time intervals, narrow enough to be considered stationary, and
then take the Fourier transform of each segment, Gabor 1946.

% Followed by other TFRs, which differed from each other by the
selection of the windowing function

Short Time Fourier Transform
(STFT)

Choose a window function of finite length

Place the window on top of the signal at t=0

Truncate the signal using this window

Compute the FT of the truncated signal, save.
Incrementally slide the window to the right

Go to step 3, until window reaches the end of the signal

OB P

For each time location where the window 1s centered, we

obtain a different FT

% Hence, each FT provides the spectral information of a
separate time-slice of the signal, providing simultaneous time
and frequency information
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STFT At Work
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STFT

< STFT provides the time information by computing a different FTs for
consecutive time intervals, and then putting them together
Y Time-Frequency Representation (TFR)
& Maps 1-D time domain signals to 2-D time-frequency signals
< Consecutive time intervals of the signal are obtained by truncating the
signal using a sliding windowing function
< How to choose the windowing function?
& What shape? Rectangular, Gaussian, Elliptic...?
& How wide?

% Wider window require less time steps = low time resolution

% Also, window should be narrow enough to make sure that the portion of
the signal falling within the window is stationary

% Can we choose an arbitrarily narrow window...?

Selection of STFT Window

Two extreme cases:

9 W() infinitely long: W(¢t)=1 =»  STFT turns into FT, providing
excellent frequency information (good frequency resolution), but no time
information

S W(v) infinitely short: W(t)= ) (¢)
STFTxa)(t,,a)) = J.[x(l‘) . 5(1‘ _t’)], e_ja)tdl‘ — X(l,) . e—ja)t’

t
=>» STFT then gives the time signal back, with a phase factor. Excellent
time information (good time resolution), but no frequency information

Wide analysis window = poor time resolution, good frequency resolution
Narrow analysis window 2good time resolution, poor frequency resolution
Once the window is chosen, the resolution is set for both time and frequency.




Heisenberg Principle

Time resolution: How well Frequency resolution: How
two spikes in time can be well two spectral components
separated from each other in can be separated from each
the transform domain other in the transform domain

Both time and frequency resolutions cannot be arbitrarily high!!!
=>» =» We cannot precisely know at what time instance a frequency component is
located. We can only know what interval of frequencies are present in which time
intervals

The Wavelet Transform

< Overcomes the preset resolution problem of the STFT by using a
variable length window

< Analysis windows of different lengths are used for different
frequencies:

Y Analysis of high frequencies=® Use narrower windows for
better time resolution

Y Analysis of low frequencies = Use wider windows for better
frequency resolution

< This works well, if the signal to be analyzed mainly consists of slowly
varying characteristics with occasional short high frequency bursts.

< Heisenberg principle still holds!!!
< The function used to window the signal is called the wavelet

See Blackboard for the Mathematics




WT at Work

WT at Work




WT at Work
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Discrete Wavelet Transform

< CWT computed by computers is really not CWT, it is a discretized
version of the CWT.

< The resolution of the time-frequency grid can be controlled (within
Heisenberg’s inequality), can be controlled by time and scale step
sizes.

< Often this results in a very redundant representation

< How to discretize the continuous time-frequency plane, so that the
representation is non-redundant?

Y Sample the time-frequency plane on a dyadic (octave) grid

SEE BLACKBOARD

ECG- Compression
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