Frequency Response (1)

• Transfer Function H(z) is the z-transform of the impulse response h(n)

$$H(z) = \sum_{n=-\infty}^{+\infty} h(n) z^{-n}$$

•Output y(n) is the convolution of the input x(n) and impulse response h(n)

$$\mathbf{y}(\mathbf{n}) = \mathbf{h}(\mathbf{n}) * \mathbf{x}(\mathbf{n}) = \sum_{k=-\infty}^{+\infty} \mathbf{h}(k) \mathbf{x}(\mathbf{n} - k)$$

Frequency Response (2)

- Consider a **pure phasor input** $x(n) = e^{j 2 \pi \Omega n}$
- The output y(n) is y(n) = h(n) * x(n)

$$y(n) = \sum_{k=-\infty}^{+\infty} h(k) x(n-k) = \sum_{k=-\infty}^{+\infty} h(k) e^{j2\pi\Omega(n-k)}$$

$$y(n) = e^{j2\pi\Omega n} \left[\sum_{k=-\infty}^{+\infty} h(k) e^{-j2\pi\Omega k}\right]$$

$$H(z)$$

$$y(n) = e^{j2\pi\Omega n} H(e^{j2\pi\Omega})$$

The response to a phasor is

✓ a phasor at the **same frequency**

- ✓ the gain is the **modulus** of H(e $j 2 \pi \Omega$)
- ✓ the phase shift is the **argument** of H(e $j 2 \pi \Omega$)

Difference Equation (1)

y(n) = a y(n-1) + x(n)ICs: y(-1) =0 then for x(n)= $\delta(n)$ we get

y(0) = 1 y(1) = a y(0) + x(1) = a $y(2) = a y(1) + x(2) = a^{2}$ $-> h(n) = a^{n} U(n)$

Knowledge of underlying physics gives the difference equation. Measurement gives impulse response.

Difference Equation (2)

Let y(n) be linear combination of the N past output values and the present and M past input values (causal) we get:

 $y(n) = -a_1y(n-1) - a_2y(n-2) - a_3y(n-3) - \dots + b_0x(n) + b_1x(n-1) + b_2x(n-2) + \dots$

or (with
$$a_0 = 1$$
) $\sum_{k=0}^{N} a_k y(n-k) = \sum_{r=0}^{M} b_r x(n-r)$

General difference equation representing a causal linear time-invariant filter.

Rational Transfer Function

• Now take the z-transform of both sides

$$\sum_{k=0}^{N} a_{k} z^{-k} \quad Y(z) = \sum_{r=0}^{M} b_{r} z^{-r} \quad X(z)$$

• The filter transfer function H(z) is

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{r=0}^{M} b_r z^{-r}}{\sum_{k=0}^{N} a_k z^{-k}}$$

 H(z) is rational, with a Mth order polynomial as numerator and Nth order polynomial as denominator -> it has M zeros and N poles in the z-plane

FIR versus IIR (1)

FIR versus IIR (3)

• FIR transfer function

$$H(z) = \sum_{n=n_1}^{n_2} h(n) \quad z^{-n} = h(n_1) \ z^{-n_1} + h(n_1+1) z^{-n_{1+1}} + \dots + h(n_2) \ z^{-n_2}$$

no pole except at z=0 (causal) or z=infinity (anti-causal)

• IIR transfer function $H(z) = \frac{\sum_{r=0}^{M} b_r z^{-r}}{\sum_{k=0}^{N} a_k z^{-k}} = \sum_{n=-\infty}^{+\infty} h(n) z^{-n}$

has **both poles and zeros** in the z-plane

FIR properties

- Frequency response is defined by location of zeros only.
 For a given complexity (nbr of multiply/add) the transition band will be smoother (that is less sharp) than with a IIR.
- The FIR are **always stable**:

$$y(n) = h(n) * x(n) = \sum_{k=\infty}^{+\infty} h(k) x(n-k) = \sum_{k=n_1}^{n_2} h(k) x(n-k)$$
$$|y_{max}| \leq \left|\sum_{k=n_1}^{n_2} h(k) x(n-k)\right| \leq \left|\sum_{k=n_1}^{n_2} h(k)\right| |x_{max}| \leq \left|\sum_{k=n_1}^{n_2} h(k)\right| |x_{max}|$$

Even-symmetric FIR

- h(n) = h(-n)
- Evaluate the frequency response (assuming that N is odd) and h(n) is real-valued

 N_{-1}

$$H(z) = \sum_{n=n_1}^{n_2} h(n) \quad z^{-n} = \sum_{n=-\frac{N-1}{2}}^{\frac{N-1}{2}} h(n) \quad z^{-n}$$

if h(n) = h(-n) we get

$$H(e^{j2\pi\Omega}) = h(0) + \sum_{n=1}^{\frac{N-1}{2}} h(n) \quad (e^{-j2\pi n\Omega} - e^{+j2\pi n\Omega})$$
$$H(e^{j2\pi\Omega}) = h(0) + 2\sum_{n=1}^{\frac{N-1}{2}} h(n) \quad \cos[2\pi n\Omega]$$

The **frequency response is real**: phase shift is 0 or 180 degrees

20 March 2003

P Baudrenghien AB/RF

Odd-symmetric FIR

•
$$h(n) = -h(-n)$$

• Evaluate the frequency response (assuming that N is odd) and h(n) is real-valued

$$H(e^{j2\pi\Omega}) = -2j \sum_{n=1}^{\frac{N-1}{2}} h(n) \sin[2\pi n\Omega]$$

The frequency response is imaginary: phase shift is 90 or -90 degrees

Constant Group Delay Filter

• Take even-symmetric FIR H(z) and shift its symmetry axis by L time samples

 $H_{1}(z) = z^{-L} H(z)$ $H_{1}(e^{j2\pi\Omega}) = e^{-j2\pi\Omega L} H(e^{j2\pi\Omega})$

 Since H(e^{j2πΩ}) is purely real, H₁ has a linear phase characteristic -> Constant Group Delay

Example 2: Design using Windows (1) H(ej^{2πΩ}) Idea: ✓ start from an **ideal frequency** response template (rectangular) \checkmark expand this function as an -1/2 1/2 Ω infinite Fourier series over the normalized frequency interval $-\Omega_{c}$ Ω_{c} [-1/2, 1/2] \checkmark identify the Fourier coefficients $H(e^{j2\pi\Omega}) = \sum c_n \cdot e^{-j2\pi n\Omega}$ as the **FIR coefficients** h(n) $n = -\infty$ ✓ **truncate** this series to the with $c_n = \int_{-\infty}^{1/2} H(e^{j2\pi\Omega}) \cdot e^{j2\pi n\Omega} d\Omega$ desired number of FIR coefficients \checkmark multiply the impulse response by a **window** to limit the Gibbs $h(n) = c_n \text{ for } n \in \left[-\frac{N-1}{2}, \frac{N-1}{2}\right]$ phenomenon and h(n) = 0 elsewhere $h'(n) = h(n) \cdot w(n)$

Step 1: Approximation Select Chebyshev Type I

A Fi	🖉 Filter Design & Analysis Tool - [C:\aalm\Huimin_Chen\m\Lecture14.fda]							
File	le Edit <u>A</u> nalysis Targets View <u>W</u> indow <u>H</u> elp							
Dø	≆∎⊜⊡(₽⊗⊘Х		1 - 🔀 😡 🛈 🔽 🕨	ล				
Current Filter Information Magnitude Response (dB)								
	Structure: Direct-Form II, Second-Order	-100						
	Sections Order: 4 Sections: 2	B B -200						
	Stable: Yes Source: Designed	Titu Bis W -300						
		400						
	Store Filter Filter Manager	-400 0 1 2 3 4 5 6 7 8 9 10 Frequency (kHz)						
	Response Type	Filter Order	Frequency Specifications	Magnitude Specifications				
-54021	O Lowpass	Specify order: 10	Units: Hz	Units: dB				
	 ◯ Highpass ◯ Bandpass 	⊙ Minimum order	Fs: 22000	Apass: 1				
जुन्द्र सुर्	O Bandstop	Options	Fpass: 3400	Astop: 20				
<u></u>	Differentiator Jesign Method	Match exactly: passband 🚽	Fstop: 5000					
	IR Chebyshev Type I							
	O FIR Equiripple							

Example 2: Design using Windows (2)

- Using Kaiser window
- Same spec as before:
 - ✓ Pass band End = 0.1
 - ✓ Pass band Ripple = 5%
 - ✓ Stop band Start = 0.13
 - ✓ Stop band Attenuation = 1/10
- Comparison with Equiripple design:
 - ✓ 43 coefficients vs. 31 (-)
 - ✓ Decreasing amplitude ripples in the Stop band (+)

Example 2: Design using Windows (3)

- Pole-Zero plot
- Location of zeros:
 - ✓ On the unit circle in the Stop band
 - ✓ Far from unit circle in Pass band

Needed number of coefficients

• For equiripple LP FIR filters:

$$N_e = \frac{2}{3} \log[\frac{1}{10 \text{ D}_{\text{pass }} \text{ D}_{\text{stop}}}] \frac{F_s}{F_{\text{stop }} - F_{\text{pass}}}$$

 ✓ Independent of BW (F_{pass})!
 ✓ Weak (logarithmic) dependence on the Pass band ripple level and the Stop band attenuation

✓ Linear dependence on the transition band!

- Our example: Ne = 29 (compared to 31)
- Problem: Very narrow filters -> **Decimating**

Overview

- Specification
- Step 1: Approximation Select Chebyshev Type I
- Step 2: Realization Cascade of biquads
- Step 3: Study of imperfections Quantizations
- Redo design steps
 - Step 1: Approximation
 - Step 2: Realization
 - Step 3: Study of imperfections
- Step 4: Implementation
- MATLAB FDAtool documents

Start with specification

Step 1: Approximation Select Chebyshev Type I

A Fi	🖉 Filter Design & Analysis Tool - [C:\aalm\Huimin_Chen\m\Lecture14.fda]							
File	le Edit <u>A</u> nalysis Targets View <u>W</u> indow <u>H</u> elp							
Dø	≆∎⊜⊡(₽⊗⊘Х		1 - 🔀 😡 🛈 🔽 🕨	ส				
Current Filter Information Magnitude Response (dB)								
	Structure: Direct-Form II, Second-Order	-100						
	Sections Order: 4 Sections: 2	B B -200						
	Stable: Yes Source: Designed	Titu Bis W -300						
		400						
	Store Filter Filter Manager	-400 0 1 2 3 4 5 6 7 8 9 10 Frequency (kHz)						
	Response Type	Filter Order	Frequency Specifications	Magnitude Specifications				
-54021	O Lowpass	Specify order: 10	Units: Hz	Units: dB				
	 ◯ Highpass ◯ Bandpass 	⊙ Minimum order	Fs: 22000	Apass: 1				
जुन्द्र सुर्	O Bandstop	Options	Fpass: 3400	Astop: 20				
<u></u>	Differentiator Jesign Method	Match exactly: passband 🚽	Fstop: 5000					
	IR Chebyshev Type I							
	O FIR Equiripple							

Export coefficients: File, Export

- A F	ilter Design & Analysis Tool -	[C:\aalm\Huimin_Chen\m\Lec	ture14.fda]					
<u>File E</u> dit <u>A</u> nalysis Targets View <u>W</u> indow <u>H</u> elp								
Dı	2860. 988X		🗈 – 🌐 🗔 🛈 🔃 🛒 🕷	?				
	Current Filter Information Filter Coefficients							
	Structure: Direct-Form II, Second-Order Sections	1 2 1 1 -1.02 1 2 1 1 -1.28 Scale Factors:	02475645119948 0.792881718 68536711890695 0.503941988	300357321				
	Order: 4	0.193158538372894	57 16	🛃 Export 📃 🖂 📉				
	Sections: 2 Stable: Yes Source: Designed		556	Export To				
				Workspace				
				Export As				
				Coefficients				
	Store Filter							
	Filter Manager			Variable Names				
	Beenenee Tume	Fitter Order	Evenuencu Specifications	SOS Matrix: SOS				
	Lowpass	O Specify order: 10	Units: Hz	Scale Values: G				
김 (현숙) 고 (현숙)	O Highpass		En: 00000	Overwrite Variables				
	⊖ Bandpass	 Minimum order 	rs. 22000					
	🔘 Bandstop	Options	Fpass: 3400	Cancer Appry				
F	O Differentiator	Match exactly: passband 👻	Estop: 5000					
.	_ Design Method							

Step 2: Realization Direct-form II biquads

Step 3: Study of imperfections: Quantization

Redo step 1: Approximation Increase order

ĺ	🣣 F	Filter Design & Analysis Tool - [C:\aalm\Huimin_Chen\m\Lecture14redo.fda]					
	File	<u>E</u> dit <u>A</u> nalysis Ta <u>r</u> gets View <u>W</u>	indow Help				
	۵۵	≥∎⊜ ⊡ ⊅⊗∞X	10 10 10 20 :# :# 11 / - ∰ 10 10 10 11 11				
<		Current Filter Information Structure: Direct-Form II, Second-Order Sections Order: 5 Sections: 3 Stable: Yes Source: Designed	Magnitude Response (dB) -100 -100 -200 -200 -300 -400 -400 -500 0 1 2 3 4 5 6 7 8 9 10				
		Filter Manager	Frequency (kHz)				
		Response Tune	Eitter Order Erequency Specifications Magnitude Specifications				
		Lowpass	Specify order: 10 Units: Hz Units: dB	-			
		O Highpass	Minimum order Fs: 22000 Apass: 0.05				
		🔘 Bandstop	Options Fpass: 3400 Aston: 20				
		Differentiator Design Method IIR Chebyshev Type I	Match exactly: passband Fstop: 5000				

Redo step 2: Realization

Redo step 3: Study of imperfections

-1	Filter Design & Analysis Tool -	[C:\aalm\Huimin_Chen\m\Lecture14redoQ.fda]	The spec is
File	e Edit Analysis Targets View W	OK	
D	🖻 🖬 🖨 🖪 🗩 🖉 🛇 🛇	🔁 🔜 🖸 妃 🗯 😩 🏔 🖵 🎟 😡 🛈 🔽 🖃 📢	
	Current Filter Information	Magnitude Response (dB)	
	Structure: Direct-Form II, Second-Order Sections Order: 5 Sections: 3 Stable: Yes Source: Designed (quantized)	0.2 0.2 0.4 0.6 0.8 -1 0 0.5 1 1.5 2 2.5 3 Frequency (kHz)	3.5
	Filter arithmetic: Fixed-point	Coefficients Input/	Output Filter Internals
- [登] []	Coefficient word length:	7 Sest-precision fraction lengths	tation
E É	Numerator frac. length:	4 Scale Values frac. length: 5	
	Numerator range (+/-):	1 Scale Values range (+/-): 1	
	Denominator frac. length:	5	

Step 4: Implementation

14.ppt]	
🛃 Filter Design & Analysis Tool - [C:\aalm\Hui	min_Chen\m\Lecture14redoQ.fda]
File Edit Analysis Targets View Window Help	
🗅 😂 🖬 🎒 🗟 Generate C header	
Code Composer Studio (tm) IDE	
XILINX Coefficient (.COE) File	🛃 Export to Code Composer Studio (R) IDE 📃 🖃
Generate HDL	Export mode: C header file Disable memory transfer warnings
	Variable names in C header file
	Numerator: NUM Numerator length: NL
	Denoministor: DEN Denoministor length: DL
	Number of sections: NS
	Data type to use in export Target Selection
	Export suggested: Signed 8-bit integer with 5-bit fractional length DSP Board #: 0 DSP Processor #: 0
	C Export as: Signed 32-bit integer Fractional length: 5
	Generate Close Help

Basic Structure for FIR

Structure for symmetric FIR

- Tapped-delay line(N-1) delays
- ■(N+1)/2 multipliers
- (N-1)/2 adders (2 inputs)
- 1 adder (N+1)/2 inputs

We save on multipliers (~50 %)

An hardware example: LF3320 (1)

Used in the Feed-forward and Feed-back on the SPS 200 MHz cavities and in the SPS longitudinal damper.

20 March 2003

An hardware example: LF3320 (2)

IIR Design based on pole-zero plot

- Idea: Deduce the location of the poles and zeros from the desired frequency response.
- Example 3: Comb Filter
 - ✓ want **periodic resonances** at 0, $\Omega_0, 2 \Omega_0, ..., (N-1) \Omega_0$
 - ✓ realized by a series of **equispaced poles**, on a circle of radius r, and at angles 0, $2\pi \Omega_{0,}$, $4\pi \Omega_{0,}$,..., 2π (N-1) Ω_0

IIR Design based on Analog Prototype

- Idea: Transform an **analog prototype** (Butterworth, Chebyshev, Elliptic) into a **digital filter**
- The **transformation** from s-plane to z-plane **must**
 - ✓ Map the $[-j\pi F_s, +j\pi F_s]$ portion of the imaginary axis (s-plane) on the unit circle in the z-plane
 - ✓ Preserve stability
- The analog features are kept
 - Digital Butterworth are monotonic in both the Pass band and Stop band
 - ✓ Digital Chebyshev have ripple in the Pass band but are monotonic in the Stop band (or vice versa)
 - ✓ Digital Elliptic are equiripple in both Pass band and Stop band

Example 4: Elliptic LP IIR (1)

LPF example (as before):

- ✓ Pass band End $F_{pass} = 0.1$
- ✓ Pass band Ripple D_{pass} =0.05 (5%=0.45 dB)
- ✓ Stop band Start $F_{stop} = 0.13$
- ✓ Stop band Attenuation $D_{stop} = 0.1$ (=20dB)
- Specifications can be achieved with a minimum **fourth-order elliptic** filter
- Transfer function is the ratio of two fourth-order polynomials

$$H(z) = \frac{N(z)}{D(z)} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + b_3 z^{-3} + b_4 z^{-4}}{a_0 + a_1 z^{-1} + a_2 z^{-2} + a_3 z^{-3} + a_4 z^{-4}}$$

Numerator: 0.108106225554593 -0.2256746087610280.312898868850319 -0.2256746087610280.108106225554593 **Denominator:** 1.0000000000000000 -2.846667053723339 3,458441598722129 -2.013976284146102

0.484098739290319

Example 4: Elliptic LP IIR (2)

- Achieved frequency response on **log scale** (blue trace)
- Very non-linear phase response (in green)
- Exact zeros in the stop band (Elliptic)

Example 4: Elliptic LP IIR (3)

- Pole-Zero plot in the zplane
- **Poles** inside the unit circle (stability) at azimuth in the **Pass band**
- Zeros on the unit circle (elliptic) at azimuth in the Transition band and Stop band

✓ 2 poles very close to the unit circle (to get a steep transition band) -> caution !
 ✓ Pole-zero cancellation -> caution!

Example 4: Elliptic LP IIR (4)

- Impulse response lasts forever (IIR!)
- Comparison with FIR design:
 - ✓ Significant reduction in the computational complexity: 10 Multiply/Add compared to 31 (+)
 - Very sensitive to quantization effects. See next lecture (-)

Basic Structure for IIR

- •Tapped-delay line (N or M) delays
- •N + M + 1 multipliers
- •2 adders (N and M+1 inputs)
- •D/N structure (or

poles/zeros structure) also called Direct Form II

Very sensitive to the effects of coefficients quantization if N or M are large!!! (next lecture)

DSP Solutions & Products Catalogue Spring 2004

Hardware - Software - Algorithms Consulting - Tools - OEM Products

TigerSHARC[®] Embedded Processor

ADSP-TS201S

KEY FEATURES

- Up to 600 MHz, 1.67 ns instruction cycle rate
- 24M bits of internal—on-chip—DRAM memory
- 25 mm \times 25 mm (576-ball) thermally enhanced ball grid array package
- Dual-computation blocks—each containing an ALU, a multiplier, a shifter, a register file, and a communications logic unit (CLU)
- Dual-integer ALUs, providing data addressing and pointer manipulation
- Integrated I/O includes 14-channel DMA controller, external port, four link ports, SDRAM controller, programmable flag pins, two timers, and timer expired pin for system integration
- 1149.1 IEEE compliant JTAG test access port for on-chip emulation

On-chip arbitration for glueless multiprocessing

KEY BENEFITS

- Provides high-performance Static Superscalar DSP operations, optimized for telecommunications infrastructure and other large, demanding multiprocessor DSP applications
- Performs exceptionally well on DSP algorithm and I/O benchmarks (see benchmarks in Table 1)
- Supports low overhead DMA transfers between internal memory, external memory, memory-mapped peripherals, link ports, host processors, and other (multiprocessor) DSPs
- Eases DSP programming through extremely flexible instruction set and high-level-language friendly DSP architecture
- Enables scalable multiprocessing systems with low communications overhead

Figure 1. Functional Block Diagram

TigerSHARC and the TigerSHARC logo are registered trademarks of Analog Devices, Inc.

Rev. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

 One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 U.S.A.

 Tel: 781/329-4700
 www.analog.com

 Fax: 781/326-8703
 © 2004 Analog Devices, Inc. All rights reserved.

ADSP-TS201S

OUTLINE DIMENSIONS

The ADSP-TS201S processor is available in a 25 mm \times 25 mm, 576-ball metric thermally enhanced ball grid array (BGA_ED) package with 24 rows of balls (BP-576).

- 4. CENTER DIMENSIONS ARE NOMINAL.
- 5. THIS PACKAGE CONFORMS WITH THE JEDEC MS-034 SPECIFICATION.

Figure 46. 576-Ball BGA_ED (BP-576)

ORDERING GUIDE

Part Number ^{1, 2, 3, 4, 5}	Case Temperature Range	Instruction Rate ⁶	On-Chip DRAM	Operating Voltage	Package
ADSP-TS201SABP-060	-40°C to +85°C	600 MHz	24M bit	1.20 V _{DD} , 2.5 V _{DD_IO} , 1.6 V _{DD_DRAM}	(BP-576) ⁷
ADSP-TS201SABP-050	-40°C to +85°C	500 MHz	24M bit	1.05 V _{DD} , 2.5 V _{DD_IO} , 1.5 V _{DD_DRAM}	(BP-576)
ADSP-TS201SWBP-050	-40°C to +105°C	500 MHz	24M bit	1.05 V _{DD} , 2.5 V _{DD_IO} , 1.5 V _{DD_DRAM}	(BP-576)

¹S indicates 1.xx/2.5 V supplies.

² A indicates –40°C to +85°C temperature.

³W indicates -40°C to +105°C temperature.

⁴ BP indicates thermally enhanced ball grid array (BGA_ED) package.

⁵-060 indicates 600 MHz operation, and -050 indicates 500 MHz operation.

⁶ The instruction rate is the same as the internal processor core clock (CCLK) rate.

 7 The BP-576 package measures 25 mm \times 25 mm.

© 2004 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D04324-0-11/04(0)

www.analog.com

DETAIL A

Quantization of coefficients

- The **coefficients** a_k and b_r must be **quantized** into our two's complement fractional
- This creates a **distortion** in the achieved frequency response
- We measure the **sensitivity** to coefficient quantization by **comparing the poles/zeros** of the infinite precision and finite precision realizations

Elliptic IIR. Direct Form (1)

- Consider the **fourth order Elliptic** IIR LPF (Example 4, slide 11 in lecture 5, Part II)
- **Direct Form II** implementation (slide 15 in lecture 5, Part II)
- Quantize its coefficients with **8 bits** ...
- ... and the filter becomes *unstable*. Two poles are moved outside the unit circle

Pole/zero plot of the **infinite precision** (blue) and finite precision (red) Elliptic IIR. Direct Form II, 8 bits coefficients.

Elliptic IIR. Direct Form (2)

- ... so we increase the number of bits: 9 bits coefficients ...
- ... and it is **stable** but the frequency response shows **severe distortion**

Pole/zero plot of the **infinite precision (blue)** and **finite precision (red)** Elliptic IIR. Comparison of the **achieved frequency response (green) with the reference (blue).** Direct Form II, 9 bits coefficients.

Equiripple FIR (1)

- Coefficient quantization displaces the zeros as well and the **FIR response** will also suffer distortion
- Consider the **31 coefficients Equiripple FIR** (slide 17, lecture 5, Part I)
- First use 8 bits coefficients.
 The result is quite good —

Pole/zero plot of the **infinite precision (blue)** and **finite precision (red)** Equiripple FIR. Comparison of the **achieved frequency response (green)** with the reference (blue). 8 bits coefficients.

27 March 2003

Equiripple FIR (2)

- So we decrease the resolution further: **5 bits coefficients**...
- ... the impulse response is much distorted ... —
- ... the zeros are not displaced much ...

Impulse response of **infinite precision (blue dots)** and finite precision (green squares). Pole/zero plot of the **infinite precision (blue)** and **finite precision (red).** Equiripple FIR. 5 bits coefficients

Equiripple FIR (3)

Lesson: FIR are much less sensitive to coefficient quantization