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Frequency Response (1)

• Transfer Function H(z) is the z-transform of the 
impulse response h(n) 

∑
∞+

-∞=n

n-z h(n)=H(z)

∑
∞+

-∞=k
* k)- x(nh(k)=x(n)h(n)=y(n)

•Output y(n) is the convolution of the input x(n) and impulse 
response h(n)
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Frequency Response (2)
• Consider a pure phasor input x(n) = e j 2 π Ω n

• The output y(n) is y(n) = h(n) * x(n)

The response to a phasor is
a phasor at the same frequency
the gain is the modulus of H(e j 2 π Ω )
the phase shift is the argument of H(e j 2 π Ω )
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Difference Equation (1)
Linear Time-Invariant -> Constant 

Coefficient Linear Difference 
Equation

y(n) = a y(n-1) + x(n)
ICs: y(-1) =0 then for x(n)=δ(n) 
we get
y(0) = 1
y(1) = a y(0) + x(1) = a
y(2) = a y(1) + x(2) = a2

-> h(n) = an U(n)

Knowledge of underlying 
physics gives the difference 
equation.
Measurement gives impulse 
response.

h(n)
x(n) y(n)

n

h(n)
1

a a2
a3
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Difference Equation (2)

Let y(n) be linear combination of the N past output values and 
the present and M past input values (causal) we get:

or (with a0 = 1)

General difference equation representing a causal linear 
time-invariant filter.

LL +2)-x(nb+1)-x(nb+x(n)b+-3)-y(na-2)-y(na -1)-y(na -=y(n)  2 1  0 3  2 1

r)- x(nb=k)-y(na ∑∑
M

0=r
r

N

0=k
k 
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Rational Transfer Function
• Now take the z-transform of both sides

• The filter transfer function H(z) is

• H(z) is rational, with a Mth order polynomial as numerator 
and Nth order polynomial as denominator -> it has M zeros 
and N poles in the z-plane

X(z)z b=Y(z)za ∑∑
M

0=r

r-
r

N

0=k

k-
k 

∑

∑
N

0=k

k-
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M
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r-
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z a

z b
=

X(z)
Y(z)

=H(z)
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FIR versus IIR (1)

• FIR = Finite Impulse Response 
filter
h(n) non zero only for n in 

[n1,n2]
example: rectangular response

• IIR = Infinite Impulse 
Response filter
example: h(n) = an U(n) n

h(n)
1

a a2

a3

h(n)

n
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FIR versus IIR (2)
• Difference Equation

• For FIR we have N=0 and …
for causal FIR
or for non-causal FIR 

• For IIR N is not zero  and the difference equations 
are recursive: y(n) depends on the past (and 
future) output values.

r)- x(nb=k)-y(n a ∑∑
M

0=r
r

N

0=k
k

r)- x(nb=y(n) ∑
M

0=r
r

LL +2)-x(nb+1)-x(nb+x(n)b+1)-x(nb+2)-x(nb+=y(n)  2 1 0 1 2
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FIR versus IIR (3)

• FIR transfer function

no pole except at z=0 (causal) or z=infinity (anti-causal)
• IIR transfer function 

has both poles and zeros in the z-plane
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FIR properties

• Frequency response is defined by location of zeros only. 
For a given complexity (nbr of multiply/add) the 
transition band will be smoother (that is less sharp) than 
with a IIR.

• The FIR are always stable: 

∑∑
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Even-symmetric FIR
• h(n) = h(-n)
• Evaluate the frequency response 

(assuming that N is odd) and 
h(n) is real-valued

]cos[ h(n) 2 + h(0) =)H(e

)e-e(h(n) + h(0) =)H(e

get  weh(-n) = h(n) if

zh(n)=zh(n)=H(z)

Ωn  π 2

2
1-N

1=n

Ω  π2 j

Ωn   π2 j+Ωn   π2 j-
2

1-N

1=n

Ω  π2 j

2
1-N

2
1-N

-=n

n-
n
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n-

∑

∑

∑∑
2

1

The frequency response is real: phase shift is 0 or 180 degrees

h(n)

n

(N=7)
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Odd-symmetric FIR

• h(n) =  - h(-n)

• Evaluate the frequency response 
(assuming that N is odd) and h(n) is 
real-valued

]sin[ h(n) j 2- =)H(e Ωn  π 2

2
1-N

1=n

Ω  π2 j ∑

The frequency response is imaginary: phase shift is 90 or -90 degrees

h(n)

n

(N=7)
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Constant Group Delay Filter
• Take even-symmetric FIR 

H(z) and shift its symmetry 
axis by L time samples

• Since H(ej2πΩ) is purely real, 
H1 has a linear phase 
characteristic -> Constant 
Group Delay

)H(e e =)(eH
H(z) z =(z)H

Ω  π2 jL Ω  π2 j-Ω  π2 j
1

-L
1

n

h(n)

n

h1(n)

L
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FIR Filter Design

• Signal Processing 
Toolkit of MATLAB 

• Define the frequency 
response template. 

• Case of LPF:
Pass band End Fpass

Pass band Ripple Dpass

Stop band Start Fstop

Stop band Attenuation
Dstop Fstop-Fpass = Transition band
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Example 1: Equiripple LP FIR (1)

• LPF example:
Pass band End Fpass = 0.1
Pass band Ripple
Dpass=0.05 (5%)
Stop band Start Fstop= 
0.13
Stop band Attenuation
Dstop = 0.1 (1/10)

• Minimum of 31 coefficients
needed to achieved required 
specifications

• Even-symmetric impulse 
response
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Example 1: Equiripple LP FIR (2)

• Achieved frequency 
response

• Purely linear phase 
response = constant 
group delay filter

• Exact zeros in the stop 
band
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Example 1: Equiripple LP FIR (3)
• Pole-Zero plot in the 

z-plane
• FIR -> pole at zero 

(causal)
• Location of zeros:

On the unit circle in 
the Stop band
Far from unit circle in 
Pass band -> ripples
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Example 2: Design using Windows (1)
• Idea:

start from an ideal frequency 
response template (rectangular)
expand this function as an 
infinite Fourier series over the 
normalized frequency interval 
[-1/2,1/2]
identify the Fourier coefficients 
as the FIR coefficients h(n)
truncate this series to the 
desired number of FIR 
coefficients
multiply the impulse response 
by a window to limit the Gibbs 
phenomenon

 w(n). h(n) = (n)h'
elsewhere 0 = h(n) and  

 ][ ∈n  for   c = h(n)

 ).eH(e=c with

.ec = )H(e

2
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- n

2
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Ωc−Ωc

H(ej2πΩ)



Step 1: Approximation
Select Chebyshev Type I
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Example 2: Design using Windows (2) 
• Using Kaiser window
• Same spec as before:

Pass band End = 0.1
Pass band Ripple = 5%
Stop band Start = 0.13
Stop band Attenuation = 1/10

• Comparison with Equiripple
design:

43 coefficients vs. 31 (-)
Decreasing amplitude ripples in 
the Stop band (+)
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Example 2: Design using Windows (3)

• Pole-Zero plot
• Location of 

zeros:
On the unit 
circle in the 
Stop band
Far from unit 
circle in Pass 
band
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Needed number of coefficients

• For equiripple LP FIR filters:

passstop

s

stoppass
e

F-F
F

 ]
D D 10

1
log[

3
2

 = N

Independent of BW (Fpass)!
Weak (logarithmic) dependence on the  

Pass band ripple level and the Stop band 
attenuation

Linear dependence on the transition band!
• Our example: Ne = 29 (compared to 31)
• Problem: Very narrow filters -> Decimating



Overview

• Specification
• Step 1: Approximation - Select Chebyshev Type I
• Step 2: Realization - Cascade of biquads
• Step 3: Study of imperfections - Quantizations
• Redo design steps

– Step 1: Approximation
– Step 2: Realization
– Step 3: Study of imperfections

• Step 4: Implementation
• MATLAB FDAtool documents



Start with specification



Step 1: Approximation
Select Chebyshev Type I



Export coefficients: File, Export



Step 2: Realization
Direct-form II biquads



Step 3: Study of imperfections: 
Quantization

The spec is 
violated!



Redo step 1: Approximation
Increase order



Redo step 2: Realization



Redo step 3: 
Study of imperfections

The spec is 
OK



Step 4: Implementation




